transformer.py 29.8 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Transformer."""
import math
import sys
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Optional, Union
from megatron_mini import get_args, core
from .module import MegatronModule
from megatron_mini.core import mpu, tensor_parallel
from megatron_mini.model.module import AttnMaskType

def print_rank_0(message):
    """If distributed is initialized, print only on rank 0."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True, file=sys.stderr)
    else:
        print(message, flush=True, file=sys.stderr)

try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_varlen_func
except ImportError:
    print_rank_0(f"WARNING: FlashAttention is not available")
    flash_attn_varlen_func = None

try:
    from flash_attn.flash_attn_interface import flash_attn_with_kvcache
except ImportError:
    print_rank_0(f"WARNING: FlashAttention is not available")
    flash_attn_with_kvcache = None


class FusedScaleMaskSoftmax(nn.Module):
    def __init__(
        self,
        input_in_fp16,
        input_in_bf16,
        attn_mask_type,
        scaled_masked_softmax_fusion,
        mask_func,
        softmax_in_fp32,
        scale,
    ):
        super(FusedScaleMaskSoftmax, self).__init__()
        self.input_in_fp16 = input_in_fp16
        self.input_in_bf16 = input_in_bf16
        assert not (
            self.input_in_fp16 and self.input_in_bf16
        ), "both fp16 and bf16 flags cannot be active at the same time."
        self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
        self.attn_mask_type = attn_mask_type
        self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
        self.mask_func = mask_func
        self.softmax_in_fp32 = softmax_in_fp32
        self.scale = scale

        assert (
            self.scale is None or softmax_in_fp32
        ), "softmax should be in fp32 when scaled"

    def forward(self, input, mask):
        # [b, np, sq, sk]
        assert input.dim() == 4

        if self.input_in_float16 and self.softmax_in_fp32:
            input = input.float()

        if self.scale is not None:
            input = input * self.scale
        mask_output = self.mask_func(input, mask) if mask is not None else input
        probs = torch.nn.Softmax(dim=-1)(mask_output)

        if self.input_in_float16 and self.softmax_in_fp32:
            if self.input_in_fp16:
                probs = probs.half()
            else:
                probs = probs.bfloat16()

        return probs


def attention_mask_func(attention_scores, attention_mask):
    attention_scores.masked_fill_(attention_mask, -10000.0)
    return attention_scores


def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": False,
        "gradient_accumulation_fusion": False,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs


class FlashSelfAttention(torch.nn.Module):
    def __init__(self, causal=False, softmax_scale=None):
        super().__init__()
        assert flash_attn_varlen_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale

    def forward(self, q, k, v):
        """Implements the softmax like attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))

        if flash_attn_with_kvcache is not None:

            """
            q: (batch_size, seqlen_q, nheads, headdim)
            k_cache: (batch_size, seqlen_kv, nheads_k, headdim)
            v_cache: (batch_size, seqlen_kv, nheads_k, headdim)

            we do not pass k and v to flash_attn_with_kvcache, because our k and v are packed with kv cache
            
            """
            context = flash_attn_with_kvcache(
                q,
                k_cache=k,
                v_cache=v,
                k=None,
                v=None,
                cache_seqlens=None,
                softmax_scale=self.softmax_scale,
                causal=True,
            )
            return context


        else:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k =k.shape[1]
            q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
            is_causal = seqlen_q == seqlen_k
            
            cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device)
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k.device)
            output = flash_attn_varlen_func(
                q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
                0.0,
                softmax_scale=self.softmax_scale, causal=is_causal
            )
            output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            return output


class CoreAttention(MegatronModule):

    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = False
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
        self.sequence_parallel = args.sequence_parallel

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
            projection_size, args.num_attention_heads)
        self.num_attention_heads_per_partition = core.utils.divide(
            args.num_attention_heads, world_size)

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting input tensor: [b * np, sq, sk]
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
            query_layer.dtype, "mpu")

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
            matmul_input_buffer,
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs
        # ===========================

        if os.getenv('AIXCODER_DEBUG') == 'ON':
            mp_0 = query_layer.shape[1]
            stats = torch.stack([
                torch.mean(attention_scores[:,:mp_0]).to(torch.float32), 
                torch.std(attention_scores[:,:mp_0]).to(torch.float32), 
                torch.max(attention_scores[:,:mp_0]).to(torch.float32)
            ]).detach().cpu().numpy()

            print_rank_0(
                f"\nAttention - scores before softmax".ljust(40) + f": {stats}, {attention_scores[:,:mp_0].dtype}, {attention_scores[:,:mp_0].shape}"
            )

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        if os.getenv('AIXCODER_DEBUG') == 'ON':
            mp_0 = query_layer.shape[1]
            stats = torch.stack([
                torch.mean(attention_probs[:,:mp_0]).to(torch.float32), 
                torch.std(attention_probs[:,:mp_0]).to(torch.float32), 
                torch.max(attention_probs[:,:mp_0]).to(torch.float32)
            ]).detach().cpu().numpy()

            print_rank_0(
                f"\nAttention_probs".ljust(40) + f": {stats}, {attention_probs[:,:mp_0].dtype}, {attention_probs[:,:mp_0].shape}"
            )
        

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


"""

Implementation for LLaMA

"""


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


# @torch.jit.script
def apply_rotary_pos_emb(x, cos, sin):

    # Handle a possible sequence length mismatch in between q and k
    cos = cos[:x.shape[0], :, :, :]
    sin = sin[:x.shape[0], :, :, :]

    part_1 = x * cos

    x1, x2 = x.chunk(2, dim=-1)
    part_2 = torch.cat((-x2, x1), dim=-1) * sin
    return part_1 + part_2


class RotaryEmbedding(MegatronModule):
    def __init__(self, seq_dimension=0, rope_theta=10000, *_, **__):
        super().__init__()
        args = get_args()
        self.args = args
        self.seq_dimension = seq_dimension
        dim_model = args.hidden_size // args.num_attention_heads

        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (rope_theta ** (torch.arange(0, dim_model, 2).float() / dim_model))

        # persistent: whether the buffer is part of this module's :attr:`state_dict`
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        self._seq_len_cached = self.args.seq_length
        t = torch.arange(
            self._seq_len_cached, dtype=torch.float32
        )
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        self._cos_cached = emb.cos()[:, None, None, :]
        self._sin_cached = emb.sin()[:, None, None, :]

    def _update_cos_sin_tables(self, x):
        seq_len = x.shape[self.seq_dimension]

        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        if (
            seq_len != self._seq_len_cached
            or self._cos_cached.device != x.device
            or self._cos_cached.dtype != x.dtype
        ):
            self._seq_len_cached = seq_len
            t = torch.arange(
                x.shape[self.seq_dimension], device=x.device, dtype=torch.float32
            )
            freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            if self.seq_dimension == 1:
                self._cos_cached = emb.cos()[None, :, None, :].to(x.dtype)
                self._sin_cached = emb.sin()[None, :, None, :].to(x.dtype)
            elif self.seq_dimension == 0:
                self._cos_cached = emb.cos()[:, None, None, :].to(x.dtype)
                self._sin_cached = emb.sin()[:, None, None, :].to(x.dtype)
            else:
                raise NotImplementedError

        return self._cos_cached, self._sin_cached

    def forward(
        self, query_layer: torch.Tensor, key_layer: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
            query_layer: [seq_len, bsz, local_num_heads, heads_dim]
        """
        self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
            key_layer
        )

        return (
            apply_rotary_pos_emb(query_layer, self._cos_cached, self._sin_cached),
            apply_rotary_pos_emb(key_layer, self._cos_cached, self._sin_cached),
        )

    def set_devices_dtype(self, x):
        self._cos_cached = self._cos_cached.to(x.dtype).to(x.device)
        self._sin_cached = self._sin_cached.to(x.dtype).to(x.device)
    
    def get_freqs_cis(self, h_shape, start_pos=0):
        seq_len = h_shape[self.seq_dimension]
        if self.seq_dimension == 1:
            return torch.stack((self._cos_cached[:, start_pos: start_pos + seq_len], self._sin_cached[:, start_pos: start_pos + seq_len]), dim=0)
        elif self.seq_dimension == 0:
            return torch.stack((self._cos_cached[start_pos: start_pos + seq_len], self._sin_cached[start_pos: start_pos + seq_len]), dim=0)
        else:
            raise NotImplementedError

    @staticmethod
    # @torch.jit.script
    def apply_rotary(
        query_layer: torch.Tensor, key_layer: torch.Tensor, freqs_cis: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        
        cos = freqs_cis[0]
        sin = freqs_cis[1]

        # handle short query 
        q_part_1 = query_layer * cos[-query_layer.shape[0]:]
        q_x1, q_x2 = query_layer.chunk(2, dim=-1)
        q_part_2 = torch.cat((-q_x2, q_x1), dim=-1) * sin[-query_layer.shape[0]:]

        k_part_1 = key_layer * cos
        k_x1, k_x2 = key_layer.chunk(2, dim=-1)
        k_part_2 = torch.cat((-k_x2, k_x1), dim=-1) * sin

        return q_part_1 + q_part_2, k_part_1 + k_part_2


class LinearScalingRotaryEmbedding(RotaryEmbedding):
    """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, seq_dimension=0, rope_theta=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(seq_dimension, rope_theta, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self._cos_cached = emb.cos()[:, None, None, :]
        self._sin_cached = emb.sin()[:, None, None, :]


class LLaMAttention(MegatronModule):
    def __init__(self, init_method,
                 output_layer_init_method, layer_number):
        super().__init__()
        args = get_args()

        self.params_dtype = args.params_dtype
        mp_world_size = mpu.get_tensor_model_parallel_world_size()
        

        self.n_local_heads = core.utils.divide(
            args.num_attention_heads, mp_world_size)
        self.head_dim = args.hidden_size // args.num_attention_heads
        self.local_num_kv_heads = core.utils.divide(
            args.num_kv_heads, mp_world_size)

        self.attention_head_type = args.attention_head_type
        self.sequence_parallel = args.sequence_parallel

        if self.attention_head_type == "multihead":
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
                args.hidden_size,
                3 * args.hidden_size,
                gather_output=False,
                init_method=init_method,
                bias=False,
                skip_bias_add=True,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
            
            self.core_attention = CoreAttention(layer_number,
                                                AttnMaskType.causal)
            
            self.cache_k = torch.zeros(
                (args.max_position_embeddings, args.micro_batch_size, self.n_local_heads, self.head_dim)
            ).cuda()
            self.cache_v = torch.zeros(
                (args.max_position_embeddings, args.micro_batch_size, self.n_local_heads, self.head_dim)
            ).cuda()
        elif self.attention_head_type == "groupedquery":
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
                args.hidden_size,
                args.hidden_size + args.num_kv_heads * 2 * self.head_dim,
                gather_output=False,
                init_method=init_method,
                bias=False,
                skip_bias_add=True,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
            cached_kv_heads_num = core.utils.divide(
                args.num_kv_heads, mp_world_size)
            
            self.core_attention = CoreAttention(layer_number,
                                                AttnMaskType.causal)
            
            # shape: [seq_len, bsz, local_kv_head_num=group_size, key_or_value=1, head_dim]
            self.cache_k = torch.zeros(
                (args.max_position_embeddings, args.micro_batch_size, cached_kv_heads_num, 1, self.head_dim)
            ).cuda()
            self.cache_v = torch.zeros(
                (args.max_position_embeddings, args.micro_batch_size, cached_kv_heads_num, 1, self.head_dim)
            ).cuda()
        else:
            raise ValueError(f"attention type was Wrong with {self.attention_head_type} in llama")

        self.wo = tensor_parallel.RowParallelLinear(
            args.hidden_size,
            args.hidden_size,
            params_dtype=self.params_dtype,
            input_is_parallel=True if mp_world_size > 1 else False,
            init_method=output_layer_init_method,
            perform_initialization=False,
            use_cpu_initialization=True,
            bias=False,
            skip_bias_add=True)
        
        self.use_flash_attn = args.use_flash_attn
        
        self.core_attention_flash = None
        if self.use_flash_attn and flash_attn_varlen_func is not None and rearrange is not None:
            self.core_attention_flash = FlashSelfAttention(
                causal=True
            )
        else:
            self.use_flash_attn = False

    def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, attention_mask: Optional[torch.Tensor]):
        seqlen, bsz, _ = x.shape

        if self.attention_head_type == 'multihead':
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(x)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.n_local_heads,
                    3 * self.head_dim)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer, key_layer, value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
        elif self.attention_head_type == 'groupedquery':
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(x)
    
            # [sq, b, ((np + kvnp*2) * hn)] --> [sq, b, local_num_kv_heads, np//kvnp + 2, hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (-1, self.n_local_heads // self.local_num_kv_heads + 2, self.head_dim)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, local_num_kv_heads, np//kvnp + 2, hn] --> 
            #   [sq, b, local_num_kv_heads, np//kvnp, hn], 2 * [sq, b, local_num_kv_heads, 1, hn]
            query_layer = mixed_x_layer[:,:,:,:-2]
            key_layer = mixed_x_layer[:,:,:,[-2]]
            value_layer = mixed_x_layer[:,:,:,[-1]]

        
        self.cache_k = self.cache_k.to(query_layer)
        self.cache_v = self.cache_v.to(query_layer)

        self.cache_k[start_pos : start_pos + seqlen, :bsz] = key_layer
        self.cache_v[start_pos : start_pos + seqlen, :bsz] = value_layer

        key_layer = self.cache_k[: start_pos + seqlen, :bsz]
        value_layer = self.cache_v[: start_pos + seqlen, :bsz]

        if self.attention_head_type == 'groupedquery':

            # TODO: now flash-attention only allowed multi-head, so we need copy kv_num_head to q_num_head
            sq, b, lkv, np_lkv, hn = query_layer.size()
            kv_size = [key_layer.size()[0], b, lkv, np_lkv, hn]
            key_layer = torch.broadcast_to(key_layer, kv_size)
            value_layer = torch.broadcast_to(value_layer, kv_size)
            query_layer, key_layer, value_layer  = [x.flatten(2, 3) for x in (query_layer, key_layer, value_layer)]

        query_layer, key_layer = RotaryEmbedding.apply_rotary(query_layer, key_layer, freqs_cis=freqs_cis)


        if not self.use_flash_attn:
            context_layer = self.core_attention(
                query_layer, key_layer, value_layer, attention_mask)
        else:
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()

        output, _ = self.wo(context_layer)
        return output


class LLaMAFeedForward(MegatronModule):
    def __init__(
        self,init_method, output_layer_init_method
    ):
        super().__init__()
        args = get_args()
        self.params_dtype = args.params_dtype

        if args.inner_hidden_dim is not None and isinstance(args.inner_hidden_dim, int) and args.inner_hidden_dim > 0:
            inn_hidden_dim = args.inner_hidden_dim
        else:
            ffn_expand_rate = 4
            inn_hidden_dim = int(2 * (args.hidden_size * ffn_expand_rate) / 3)

            # make SwiGLU hidden layer size multiple of large power of 2
            multiple_of = 256
            inn_hidden_dim = multiple_of * ((inn_hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = tensor_parallel.ColumnParallelLinear(
            args.hidden_size,
            inn_hidden_dim,
            params_dtype=self.params_dtype,
            gather_output=False,
            init_method=init_method,
            perform_initialization=False,
            use_cpu_initialization=True,
            skip_bias_add=True,
            bias=False,
        )
        
        self.w2 =  tensor_parallel.RowParallelLinear(
            inn_hidden_dim,
            args.hidden_size,
            params_dtype=self.params_dtype,
            input_is_parallel=True if args.tensor_model_parallel_size > 1 else False,
            init_method=output_layer_init_method,
            perform_initialization=False,
            use_cpu_initialization=True,
            skip_bias_add=True,
            bias=False,
        )

        self.w3 = tensor_parallel.ColumnParallelLinear(
            args.hidden_size,
            inn_hidden_dim,
            params_dtype=self.params_dtype,
            gather_output=False,
            init_method=init_method,
            perform_initialization=False,
            use_cpu_initialization=True,
            skip_bias_add=True,
            bias=False,
        )

    def forward(self, x):
        part_1, _ = self.w1(x)
        part_1 = F.silu(part_1)
        part_2, _ = self.w3(x)
        
        final, _ = self.w2(part_1 * part_2)
        return final


class LLaMATransformerBlock(MegatronModule):
    def __init__(self, init_method,
                 output_layer_init_method, layer_number):
        super().__init__()
        args = get_args()
        
        self.attention = LLaMAttention(
            init_method=init_method, output_layer_init_method=output_layer_init_method, layer_number=layer_number)
        self.feed_forward = LLaMAFeedForward(
            init_method, output_layer_init_method
        )
        self.layer_number = layer_number

        # epsilon: 1e-5
        self.attention_norm = RMSNorm(args.hidden_size, eps=args.layernorm_epsilon)
        self.ffn_norm = RMSNorm(args.hidden_size, eps=args.layernorm_epsilon)

    def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
        h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask)
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out


class LLaMATransformer(MegatronModule):
    def __init__(self, init_method, output_layer_init_method):
        super().__init__()
        args = get_args()
        self.num_layers = args.num_layers
        self.seq_dimension = 0
        self.params_dtype = args.params_dtype

        self.tok_embeddings = tensor_parallel.VocabParallelEmbedding(
            args.padded_vocab_size, args.hidden_size,
            init_method=init_method,
            params_dtype=self.params_dtype,
            use_cpu_initialization=True,
            perform_initialization=False
        )
        
        self.layers = torch.nn.ModuleList()
        for layer_id in range(self.num_layers):
            self.layers.append(LLaMATransformerBlock(init_method, output_layer_init_method, layer_id))

        self.norm = RMSNorm(args.hidden_size, eps=args.layernorm_epsilon)

        # mapping hidden_states to logits value
        self.output = tensor_parallel.ColumnParallelLinear(
            args.hidden_size,
            args.padded_vocab_size,
            params_dtype=self.params_dtype,
            gather_output=True,
            init_method=init_method,
            perform_initialization=False,
            use_cpu_initialization=True,
            skip_bias_add=True,
            bias=False
        )

        if args.rope_linear_scaling_factor > 1:
            self.rope = LinearScalingRotaryEmbedding(seq_dimension=self.seq_dimension, rope_theta=args.rope_theta, scaling_factor=args.rope_linear_scaling_factor)
        else:
            self.rope = RotaryEmbedding(seq_dimension=self.seq_dimension, rope_theta=args.rope_theta)

    @torch.inference_mode()
    def forward(self, tokens: torch.Tensor, start_pos: int, return_hidden=False) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = h.transpose(0, 1).contiguous()

        self.rope.set_devices_dtype(h)
        h_shape = h.shape
        h_shape = [s + start_pos if s_i ==0 else s for s_i, s in enumerate(h_shape)]
        freqs_cis = self.rope.get_freqs_cis(h_shape)

        attention_mask = None
        if seqlen > 1:
            attention_mask = torch.tril(torch.ones(
                (1, seqlen, seqlen), device=tokens.device)).view(
                    1, 1, seqlen, seqlen).type_as(h)
            attention_mask = (attention_mask < 0.5)
            
        hidden_list = []
        for layer_id, layer in enumerate(self.layers):

            # shape: [seq_len, bsz, hidden_size]
            h = layer(h, start_pos, freqs_cis, attention_mask)

            if return_hidden and layer_id in {0, int(self.num_layers/3), int(self.num_layers/5 * 4)}:
                hidden_list.append(h.float().transpose(0,1).contiguous())
        
        h = self.norm(h)
        h = h.transpose(0,1).contiguous()
        if return_hidden:
            hidden_list.append(h.float())

        output, _ = self.output(h)

        if return_hidden:
            return output.float(), hidden_list, self.output.weight.float()
        else:
            return output.float()