utils.py 5.16 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Utilization functions
"""

import os
import random
import sys

import numpy as np
import torch


def str_to_bool(val):
    """Convert a string representation of truth to true (1) or false (0).
    Copied from the python implementation distutils.utils.strtobool

    True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
    are 'n', 'no', 'f', 'false', 'off', and '0'.  Raises ValueError if
    'val' is anything else.
    >>> str_to_bool('YES')
    1
    >>> str_to_bool('FALSE')
    0
    """
    val = val.lower()
    if val in ('y', 'yes', 't', 'true', 'on', '1'):
        return True
    if val in ('n', 'no', 'f', 'false', 'off', '0'):
        return False
    raise ValueError('invalid truth value {}'.format(val))


def cosine_annealing(step, total_steps, lr_max, lr_min):
    """Cosine Annealing for learning rate decay scheduler"""
    return lr_min + (lr_max -
                     lr_min) * 0.5 * (1 + np.cos(step / total_steps * np.pi))


def keras_decay(step, decay=0.0001):
    """Learning rate decay in Keras-style"""
    return 1. / (1. + decay * step)


class SGDRScheduler(torch.optim.lr_scheduler._LRScheduler):
    """SGD with restarts scheduler"""
    def __init__(self, optimizer, T0, T_mul, eta_min, last_epoch=-1):
        self.Ti = T0
        self.T_mul = T_mul
        self.eta_min = eta_min

        self.last_restart = 0

        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        T_cur = self.last_epoch - self.last_restart
        if T_cur >= self.Ti:
            self.last_restart = self.last_epoch
            self.Ti = self.Ti * self.T_mul
            T_cur = 0

        return [
            self.eta_min + (base_lr - self.eta_min) *
            (1 + np.cos(np.pi * T_cur / self.Ti)) / 2
            for base_lr in self.base_lrs
        ]


def _get_optimizer(model_parameters, optim_config):
    """Defines optimizer according to the given config"""
    optimizer_name = optim_config['optimizer']

    if optimizer_name == 'sgd':
        optimizer = torch.optim.SGD(model_parameters,
                                    lr=optim_config['base_lr'],
                                    momentum=optim_config['momentum'],
                                    weight_decay=optim_config['weight_decay'],
                                    nesterov=optim_config['nesterov'])
    elif optimizer_name == 'adam':
        optimizer = torch.optim.Adam(model_parameters,
                                     lr=optim_config['base_lr'],
                                     betas=optim_config['betas'],
                                     weight_decay=optim_config['weight_decay'],
                                     amsgrad=str_to_bool(
                                         optim_config['amsgrad']))
    else:
        print('Un-known optimizer', optimizer_name)
        sys.exit()

    return optimizer


def _get_scheduler(optimizer, optim_config):
    """
    Defines learning rate scheduler according to the given config
    """
    if optim_config['scheduler'] == 'multistep':
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=optim_config['milestones'],
            gamma=optim_config['lr_decay'])

    elif optim_config['scheduler'] == 'sgdr':
        scheduler = SGDRScheduler(optimizer, optim_config['T0'],
                                  optim_config['Tmult'],
                                  optim_config['lr_min'])

    elif optim_config['scheduler'] == 'cosine':
        total_steps = optim_config['epochs'] * \
            optim_config['steps_per_epoch']

        scheduler = torch.optim.lr_scheduler.LambdaLR(
            optimizer,
            lr_lambda=lambda step: cosine_annealing(
                step,
                total_steps,
                1,  # since lr_lambda computes multiplicative factor
                optim_config['lr_min'] / optim_config['base_lr']))

    elif optim_config['scheduler'] == 'keras_decay':
        scheduler = torch.optim.lr_scheduler.LambdaLR(
            optimizer, lr_lambda=lambda step: keras_decay(step))
    else:
        scheduler = None
    return scheduler


def create_optimizer(model_parameters, optim_config):
    """Defines an optimizer and a scheduler"""
    optimizer = _get_optimizer(model_parameters, optim_config)
    scheduler = _get_scheduler(optimizer, optim_config)
    return optimizer, scheduler


def seed_worker(worker_id):
    """
    Used in generating seed for the worker of torch.utils.data.Dataloader
    """
    worker_seed = torch.initial_seed() % 2**32
    np.random.seed(worker_seed)
    random.seed(worker_seed)


def set_seed(seed, config = None):
    """ 
    set initial seed for reproduction
    """
    if config is None:
        raise ValueError("config should not be None")

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = str_to_bool(config["cudnn_deterministic_toggle"])
        torch.backends.cudnn.benchmark = str_to_bool(config["cudnn_benchmark_toggle"])