RawNet2Spoof.py 11 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import numpy as np
from torch.utils import data
from torch.nn.parameter import Parameter

___author__ = "Hemlata Tak"
__email__ = "tak@eurecom.fr"


class SincConv(nn.Module):
    @staticmethod
    def to_mel(hz):
        return 2595 * np.log10(1 + hz / 700)

    @staticmethod
    def to_hz(mel):
        return 700 * (10**(mel / 2595) - 1)

    def __init__(
        self,
        #device,
        out_channels,
        kernel_size,
        in_channels=1,
        sample_rate=16000,
        stride=1,
        padding=0,
        dilation=1,
        bias=False,
        groups=1,
    ):
        super().__init__()

        if in_channels != 1:

            msg = (
                "SincConv only support one input channel (here, in_channels = {%i})"
                % (in_channels))
            raise ValueError(msg)

        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.sample_rate = sample_rate

        # Forcing the filters to be odd (i.e, perfectly symmetrics)
        if kernel_size % 2 == 0:
            self.kernel_size = self.kernel_size + 1

        #self.device = device
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        if bias:
            raise ValueError("SincConv does not support bias.")
        if groups > 1:
            raise ValueError("SincConv does not support groups.")

        # initialize filterbanks using Mel scale
        NFFT = 512
        f = int(self.sample_rate / 2) * np.linspace(0, 1, int(NFFT / 2) + 1)
        fmel = self.to_mel(f)  # Hz to mel conversion
        fmelmax = np.max(fmel)
        fmelmin = np.min(fmel)
        filbandwidthsmel = np.linspace(fmelmin, fmelmax, self.out_channels + 1)
        filbandwidthsf = self.to_hz(filbandwidthsmel)  # Mel to Hz conversion
        self.mel = filbandwidthsf
        self.hsupp = torch.arange(-(self.kernel_size - 1) / 2,
                                  (self.kernel_size - 1) / 2 + 1)
        self.band_pass = torch.zeros(self.out_channels, self.kernel_size)

    def forward(self, x):
        for i in range(len(self.mel) - 1):
            fmin = self.mel[i]
            fmax = self.mel[i + 1]
            hHigh = (2 * fmax / self.sample_rate) * np.sinc(
                2 * fmax * self.hsupp / self.sample_rate)
            hLow = (2 * fmin / self.sample_rate) * np.sinc(
                2 * fmin * self.hsupp / self.sample_rate)
            hideal = hHigh - hLow

            self.band_pass[i, :] = Tensor(np.hamming(
                self.kernel_size)) * Tensor(hideal)

        band_pass_filter = self.band_pass.to(x.device)

        self.filters = (band_pass_filter).view(self.out_channels, 1,
                                               self.kernel_size)

        return F.conv1d(
            x,
            self.filters,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            bias=None,
            groups=1,
        )


class Residual_block(nn.Module):
    def __init__(self, nb_filts, first=False):
        super(Residual_block, self).__init__()
        self.first = first

        if not self.first:
            self.bn1 = nn.BatchNorm1d(num_features=nb_filts[0])

        self.lrelu = nn.LeakyReLU(negative_slope=0.3)

        self.conv1 = nn.Conv1d(
            in_channels=nb_filts[0],
            out_channels=nb_filts[1],
            kernel_size=3,
            padding=1,
            stride=1,
        )

        self.bn2 = nn.BatchNorm1d(num_features=nb_filts[1])
        self.conv2 = nn.Conv1d(
            in_channels=nb_filts[1],
            out_channels=nb_filts[1],
            padding=1,
            kernel_size=3,
            stride=1,
        )

        if nb_filts[0] != nb_filts[1]:
            self.downsample = True
            self.conv_downsample = nn.Conv1d(
                in_channels=nb_filts[0],
                out_channels=nb_filts[1],
                padding=0,
                kernel_size=1,
                stride=1,
            )

        else:
            self.downsample = False
        self.mp = nn.MaxPool1d(3)

    def forward(self, x):
        identity = x
        if not self.first:
            out = self.bn1(x)
            out = self.lrelu(out)
        else:
            out = x

        out = self.conv1(x)
        out = self.bn2(out)
        out = self.lrelu(out)
        out = self.conv2(out)

        if self.downsample:
            identity = self.conv_downsample(identity)

        out += identity
        out = self.mp(out)
        return out


class Model(nn.Module):
    #def __init__(self, d_args, device):
    def __init__(self, d_args):
        super().__init__()

        #self.device = device
        self.Sinc_conv = SincConv(
            #device=self.device,
            out_channels=d_args["filts"][0],
            kernel_size=d_args["first_conv"],
            in_channels=d_args["in_channels"],
        )

        self.first_bn = nn.BatchNorm1d(num_features=d_args["filts"][0])
        self.selu = nn.SELU(inplace=True)
        self.block0 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][1], first=True))
        self.block1 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][1]))
        self.block2 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][2]))
        d_args["filts"][2][0] = d_args["filts"][2][1]
        self.block3 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][2]))
        self.block4 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][2]))
        self.block5 = nn.Sequential(
            Residual_block(nb_filts=d_args["filts"][2]))
        self.avgpool = nn.AdaptiveAvgPool1d(1)

        self.fc_attention0 = self._make_attention_fc(
            in_features=d_args["filts"][1][-1],
            l_out_features=d_args["filts"][1][-1])
        self.fc_attention1 = self._make_attention_fc(
            in_features=d_args["filts"][1][-1],
            l_out_features=d_args["filts"][1][-1])
        self.fc_attention2 = self._make_attention_fc(
            in_features=d_args["filts"][2][-1],
            l_out_features=d_args["filts"][2][-1])
        self.fc_attention3 = self._make_attention_fc(
            in_features=d_args["filts"][2][-1],
            l_out_features=d_args["filts"][2][-1])
        self.fc_attention4 = self._make_attention_fc(
            in_features=d_args["filts"][2][-1],
            l_out_features=d_args["filts"][2][-1])
        self.fc_attention5 = self._make_attention_fc(
            in_features=d_args["filts"][2][-1],
            l_out_features=d_args["filts"][2][-1])

        self.bn_before_gru = nn.BatchNorm1d(
            num_features=d_args["filts"][2][-1])
        self.gru = nn.GRU(
            input_size=d_args["filts"][2][-1],
            hidden_size=d_args["gru_node"],
            num_layers=d_args["nb_gru_layer"],
            batch_first=True,
        )

        self.fc1_gru = nn.Linear(in_features=d_args["gru_node"],
                                 out_features=d_args["nb_fc_node"])

        self.fc2_gru = nn.Linear(
            in_features=d_args["nb_fc_node"],
            out_features=d_args["nb_classes"],
            bias=True,
        )

        self.sig = nn.Sigmoid()
        self.logsoftmax = nn.LogSoftmax(dim=1)

    def forward(self, x, Freq_aug=None):

        nb_samp = x.shape[0]
        len_seq = x.shape[1]
        x = x.view(nb_samp, 1, len_seq)

        x = self.Sinc_conv(x)
        x = F.max_pool1d(torch.abs(x), 3)
        x = self.first_bn(x)
        x = self.selu(x)

        x0 = self.block0(x)
        y0 = self.avgpool(x0).view(x0.size(0),
                                   -1)  # torch.Size([batch, filter])
        y0 = self.fc_attention0(y0)
        y0 = self.sig(y0).view(y0.size(0), y0.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x0 * y0 + y0  # (batch, filter, time) x (batch, filter, 1)

        x1 = self.block1(x)
        y1 = self.avgpool(x1).view(x1.size(0),
                                   -1)  # torch.Size([batch, filter])
        y1 = self.fc_attention1(y1)
        y1 = self.sig(y1).view(y1.size(0), y1.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x1 * y1 + y1  # (batch, filter, time) x (batch, filter, 1)

        x2 = self.block2(x)
        y2 = self.avgpool(x2).view(x2.size(0),
                                   -1)  # torch.Size([batch, filter])
        y2 = self.fc_attention2(y2)
        y2 = self.sig(y2).view(y2.size(0), y2.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x2 * y2 + y2  # (batch, filter, time) x (batch, filter, 1)

        x3 = self.block3(x)
        y3 = self.avgpool(x3).view(x3.size(0),
                                   -1)  # torch.Size([batch, filter])
        y3 = self.fc_attention3(y3)
        y3 = self.sig(y3).view(y3.size(0), y3.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x3 * y3 + y3  # (batch, filter, time) x (batch, filter, 1)

        x4 = self.block4(x)
        y4 = self.avgpool(x4).view(x4.size(0),
                                   -1)  # torch.Size([batch, filter])
        y4 = self.fc_attention4(y4)
        y4 = self.sig(y4).view(y4.size(0), y4.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x4 * y4 + y4  # (batch, filter, time) x (batch, filter, 1)

        x5 = self.block5(x)
        y5 = self.avgpool(x5).view(x5.size(0),
                                   -1)  # torch.Size([batch, filter])
        y5 = self.fc_attention5(y5)
        y5 = self.sig(y5).view(y5.size(0), y5.size(1),
                               -1)  # torch.Size([batch, filter, 1])
        x = x5 * y5 + y5  # (batch, filter, time) x (batch, filter, 1)

        x = self.bn_before_gru(x)
        x = self.selu(x)
        x = x.permute(0, 2, 1)  # (batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:, -1, :]
        last_hidden = self.fc1_gru(x)
        x = self.fc2_gru(last_hidden)
        output = self.logsoftmax(x)

        return last_hidden, output

    def _make_attention_fc(self, in_features, l_out_features):

        l_fc = []

        l_fc.append(
            nn.Linear(in_features=in_features, out_features=l_out_features))

        return nn.Sequential(*l_fc)

    def _make_layer(self, nb_blocks, nb_filts, first=False):
        layers = []
        # def __init__(self, nb_filts, first = False):
        for i in range(nb_blocks):
            first = first if i == 0 else False
            layers.append(Residual_block(nb_filts=nb_filts, first=first))
            if i == 0:
                nb_filts[0] = nb_filts[1]

        return nn.Sequential(*layers)