inference_s3diff.py 8.11 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
os.environ['CURL_CA_BUNDLE'] = ''
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
import gc
import tqdm
import math
import argparse
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers

from omegaconf import OmegaConf
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms

import diffusers
import utils.misc as misc

from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler

from de_net import DEResNet
from s3diff_tile import S3Diff
from my_utils.testing_utils import parse_args_paired_testing, PlainDataset, lr_proc
from utils.util_image import ImageSpliterTh
from my_utils.utils import instantiate_from_config
from pathlib import Path
from utils import util_image
from utils.wavelet_color import wavelet_color_fix, adain_color_fix

def evaluate(in_path, ref_path, ntest):
    """仅保留无参考评估(不依赖参考图)"""
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    # 仅保留无参考指标(无需参考图,不要求尺寸匹配)
    metric_dict = {}
    metric_dict["clipiqa"] = pyiqa.create_metric('clipiqa').to(device)
    metric_dict["musiq"] = pyiqa.create_metric('musiq').to(device)
    metric_dict["niqe"] = pyiqa.create_metric('niqe').to(device)
    metric_dict["maniqa"] = pyiqa.create_metric('maniqa').to(device)

    in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
    assert in_path.is_dir()

    # 无参考评估,无需处理参考图路径
    lr_path_list = sorted([x for x in in_path.glob("*.[jpJP][pnPN]*[gG]")])
    if ntest is not None:
        lr_path_list = lr_path_list[:ntest]

    print(f'Find {len(lr_path_list)} images in {in_path}')
    result = {}
    for i in tqdm.tqdm(range(len(lr_path_list))):
        _in_path = lr_path_list[i]

        # 仅加载超分图(无参考评估不需要参考图)
        im_in = util_image.imread(_in_path, chn='rgb', dtype='float32')  # h x w x c
        im_in_tensor = util_image.img2tensor(im_in).cuda()              # 1 x c x h x w
        
        # 计算无参考指标分数
        for key, metric in metric_dict.items():
            with torch.cuda.amp.autocast():
                result[key] = result.get(key, 0) + metric(im_in_tensor).item()

    # 输出平均分数(无FID等有参考指标)
    print_results = []
    for key, res in result.items():
        avg_score = res / len(lr_path_list)
        print(f"{key}: {avg_score:.5f}")
        print_results.append(f"{key}: {avg_score:.5f}")
    
    return print_results


def main(args):
    config = OmegaConf.load(args.base_config)

    if args.pretrained_path is None:
        from huggingface_hub import hf_hub_download
        #pretrained_path = hf_hub_download(repo_id="zhangap/S3Diff", filename="s3diff.pkl")
        pretrained_path = "./pretrained_weight/zhangap/S3Diff/s3diff.pkl"                      ###

    else:
        pretrained_path = args.pretrained_path

    if args.sd_path is None:
        #from huggingface_hub import snapshot_download
        #sd_path = snapshot_download(repo_id="stabilityai/sd-turbo")
        # 直接使用本地已下载的 sd-turbo路径
        sd_path = "./pretrained_weight/stabilityai/sd-turbo/"

    else:
        sd_path = args.sd_path

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
    )

    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    if args.seed is not None:
        set_seed(args.seed)

    if accelerator.is_main_process:
        os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
        os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)

    # initialize net_sr
    net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=sd_path, pretrained_path=pretrained_path, args=args)
    net_sr.set_eval()

    net_de = DEResNet(num_in_ch=3, num_degradation=2)
    net_de.load_model(args.de_net_path)
    net_de = net_de.cuda()
    net_de.eval()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            net_sr.unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available, please install it by running `pip install xformers`")

    if args.gradient_checkpointing:
        net_sr.unet.enable_gradient_checkpointing()

    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    dataset_val = PlainDataset(config.validation)
    dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)

    # Prepare everything with our `accelerator`.
    net_sr, net_de = accelerator.prepare(net_sr, net_de)

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move al networksr to device and cast to weight_dtype
    net_sr.to(accelerator.device, dtype=weight_dtype)
    net_de.to(accelerator.device, dtype=weight_dtype)

    offset = args.padding_offset
    for step, batch_val in enumerate(dl_val):
        lr_path = batch_val['lr_path'][0]
        (path, name) = os.path.split(lr_path)

        im_lr = batch_val['lr'].cuda()
        im_lr = im_lr.to(memory_format=torch.contiguous_format).float()

        ori_h, ori_w = im_lr.shape[2:]
        im_lr_resize = F.interpolate(
            im_lr,
            size=(ori_h * config.sf,
                  ori_w * config.sf),
            mode='bilinear',
            align_corners=False  # align_corners with this model causes the output to be shifted, presumably due to training without align_corners
        )

        im_lr_resize = im_lr_resize.contiguous()
        im_lr_resize_norm = im_lr_resize * 2 - 1.0
        im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0)
        resize_h, resize_w = im_lr_resize_norm.shape[2:]

        pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h
        pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w
        im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect')

        B = im_lr_resize.size(0)
        with torch.no_grad():
            # forward pass
            deg_score = net_de(im_lr)
            pos_tag_prompt = [args.pos_prompt for _ in range(B)]
            neg_tag_prompt = [args.neg_prompt for _ in range(B)]
            x_tgt_pred = accelerator.unwrap_model(net_sr)(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt)
            x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w]
            out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach()

        output_pil = transforms.ToPILImage()(out_img[0])

        if args.align_method == 'nofix':
            output_pil = output_pil
        else:
            im_lr_resize = transforms.ToPILImage()(im_lr_resize[0].cpu().detach())
            if args.align_method == 'wavelet':
                output_pil = wavelet_color_fix(output_pil, im_lr_resize)
            elif args.align_method == 'adain':
                output_pil = adain_color_fix(output_pil, im_lr_resize)

        fname, ext = os.path.splitext(name)
        outf = os.path.join(args.output_dir, fname+'.png')
        output_pil.save(outf)

    # 执行无参考评估(ref_path传入None不影响,函数内已忽略)
    print_results = evaluate(args.output_dir, args.ref_path, None)
    out_t = os.path.join(args.output_dir, 'results.txt')
    with open(out_t, 'w', encoding='utf-8') as f:
        for item in print_results:
            f.write(f"{item}\n")

    gc.collect()
    torch.cuda.empty_cache()

if __name__ == "__main__":
    # 导入pyiqa(确保在执行评估前导入)
    import pyiqa
    args = parse_args_paired_testing()
    main(args)