"vscode:/vscode.git/clone" did not exist on "06d4188122cc1cbc3da4182a43d1ca81598a3ee3"
Commit 6f73ea6b authored by mashun1's avatar mashun1
Browse files

omniparser

parents
Pipeline #2421 failed with stages
in 0 seconds
import os
import logging
import base64
import requests
from .utils import is_image_path, encode_image
def run_oai_interleaved(messages: list, system: str, model_name: str, api_key: str, max_tokens=256, temperature=0, provider_base_url: str = "https://api.openai.com/v1"):
headers = {"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"}
final_messages = [{"role": "system", "content": system}]
if type(messages) == list:
for item in messages:
contents = []
if isinstance(item, dict):
for cnt in item["content"]:
if isinstance(cnt, str):
if is_image_path(cnt) and 'o3-mini' not in model_name:
# 03 mini does not support images
base64_image = encode_image(cnt)
content = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
else:
content = {"type": "text", "text": cnt}
else:
# in this case it is a text block from anthropic
content = {"type": "text", "text": str(cnt)}
contents.append(content)
message = {"role": 'user', "content": contents}
else: # str
contents.append({"type": "text", "text": item})
message = {"role": "user", "content": contents}
final_messages.append(message)
elif isinstance(messages, str):
final_messages = [{"role": "user", "content": messages}]
payload = {
"model": model_name,
"messages": final_messages,
}
if 'o1' in model_name or 'o3-mini' in model_name:
payload['reasoning_effort'] = 'low'
payload['max_completion_tokens'] = max_tokens
else:
payload['max_tokens'] = max_tokens
response = requests.post(
f"{provider_base_url}/chat/completions", headers=headers, json=payload
)
try:
text = response.json()['choices'][0]['message']['content']
token_usage = int(response.json()['usage']['total_tokens'])
return text, token_usage
except Exception as e:
print(f"Error in interleaved openAI: {e}. This may due to your invalid API key. Please check the response: {response.json()} ")
return response.json()
\ No newline at end of file
import requests
import base64
from pathlib import Path
from tools.screen_capture import get_screenshot
from agent.llm_utils.utils import encode_image
OUTPUT_DIR = "./tmp/outputs"
class OmniParserClient:
def __init__(self,
url: str) -> None:
self.url = url
def __call__(self,):
screenshot, screenshot_path = get_screenshot()
screenshot_path = str(screenshot_path)
image_base64 = encode_image(screenshot_path)
response = requests.post(self.url, json={"base64_image": image_base64})
response_json = response.json()
print('omniparser latency:', response_json['latency'])
som_image_data = base64.b64decode(response_json['som_image_base64'])
screenshot_path_uuid = Path(screenshot_path).stem.replace("screenshot_", "")
som_screenshot_path = f"{OUTPUT_DIR}/screenshot_som_{screenshot_path_uuid}.png"
with open(som_screenshot_path, "wb") as f:
f.write(som_image_data)
response_json['width'] = screenshot.size[0]
response_json['height'] = screenshot.size[1]
response_json['original_screenshot_base64'] = image_base64
response_json['screenshot_uuid'] = screenshot_path_uuid
response_json = self.reformat_messages(response_json)
return response_json
def reformat_messages(self, response_json: dict):
screen_info = ""
for idx, element in enumerate(response_json["parsed_content_list"]):
element['idx'] = idx
if element['type'] == 'text':
screen_info += f'ID: {idx}, Text: {element["content"]}\n'
elif element['type'] == 'icon':
screen_info += f'ID: {idx}, Icon: {element["content"]}\n'
response_json['screen_info'] = screen_info
return response_json
\ No newline at end of file
import base64
def is_image_path(text):
image_extensions = (".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".tif")
if text.endswith(image_extensions):
return True
else:
return False
def encode_image(image_path):
"""Encode image file to base64."""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
\ No newline at end of file
import json
from collections.abc import Callable
from typing import cast, Callable
import uuid
from PIL import Image, ImageDraw
import base64
from io import BytesIO
from anthropic import APIResponse
from anthropic.types import ToolResultBlockParam
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock, BetaMessageParam, BetaUsage
from agent.llm_utils.oaiclient import run_oai_interleaved
from agent.llm_utils.groqclient import run_groq_interleaved
from agent.llm_utils.utils import is_image_path
import time
import re
OUTPUT_DIR = "./tmp/outputs"
def extract_data(input_string, data_type):
# Regular expression to extract content starting from '```python' until the end if there are no closing backticks
pattern = f"```{data_type}" + r"(.*?)(```|$)"
# Extract content
# re.DOTALL allows '.' to match newlines as well
matches = re.findall(pattern, input_string, re.DOTALL)
# Return the first match if exists, trimming whitespace and ignoring potential closing backticks
return matches[0][0].strip() if matches else input_string
class VLMAgent:
def __init__(
self,
model: str,
provider: str,
api_key: str,
output_callback: Callable,
api_response_callback: Callable,
max_tokens: int = 4096,
only_n_most_recent_images: int | None = None,
print_usage: bool = True,
):
if model == "omniparser + gpt-4o":
self.model = "gpt-4o-2024-11-20"
elif model == "omniparser + R1":
self.model = "deepseek-r1-distill-llama-70b"
elif model == "omniparser + qwen2.5vl":
self.model = "qwen2.5-vl-72b-instruct"
elif model == "omniparser + o1":
self.model = "o1"
elif model == "omniparser + o3-mini":
self.model = "o3-mini"
else:
raise ValueError(f"Model {model} not supported")
self.provider = provider
self.api_key = api_key
self.api_response_callback = api_response_callback
self.max_tokens = max_tokens
self.only_n_most_recent_images = only_n_most_recent_images
self.output_callback = output_callback
self.print_usage = print_usage
self.total_token_usage = 0
self.total_cost = 0
self.step_count = 0
self.system = ''
def __call__(self, messages: list, parsed_screen: list[str, list, dict]):
self.step_count += 1
image_base64 = parsed_screen['original_screenshot_base64']
latency_omniparser = parsed_screen['latency']
self.output_callback(f'-- Step {self.step_count}: --', sender="bot")
screen_info = str(parsed_screen['screen_info'])
screenshot_uuid = parsed_screen['screenshot_uuid']
screen_width, screen_height = parsed_screen['width'], parsed_screen['height']
boxids_and_labels = parsed_screen["screen_info"]
system = self._get_system_prompt(boxids_and_labels)
# drop looping actions msg, byte image etc
planner_messages = messages
_remove_som_images(planner_messages)
_maybe_filter_to_n_most_recent_images(planner_messages, self.only_n_most_recent_images)
if isinstance(planner_messages[-1], dict):
if not isinstance(planner_messages[-1]["content"], list):
planner_messages[-1]["content"] = [planner_messages[-1]["content"]]
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_{screenshot_uuid}.png")
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_som_{screenshot_uuid}.png")
start = time.time()
if "gpt" in self.model or "o1" in self.model or "o3-mini" in self.model:
vlm_response, token_usage = run_oai_interleaved(
messages=planner_messages,
system=system,
model_name=self.model,
api_key=self.api_key,
max_tokens=self.max_tokens,
provider_base_url="https://api.openai.com/v1",
temperature=0,
)
print(f"oai token usage: {token_usage}")
self.total_token_usage += token_usage
if 'gpt' in self.model:
self.total_cost += (token_usage * 2.5 / 1000000) # https://openai.com/api/pricing/
elif 'o1' in self.model:
self.total_cost += (token_usage * 15 / 1000000) # https://openai.com/api/pricing/
elif 'o3-mini' in self.model:
self.total_cost += (token_usage * 1.1 / 1000000) # https://openai.com/api/pricing/
elif "r1" in self.model:
vlm_response, token_usage = run_groq_interleaved(
messages=planner_messages,
system=system,
model_name=self.model,
api_key=self.api_key,
max_tokens=self.max_tokens,
)
print(f"groq token usage: {token_usage}")
self.total_token_usage += token_usage
self.total_cost += (token_usage * 0.99 / 1000000)
elif "qwen" in self.model:
vlm_response, token_usage = run_oai_interleaved(
messages=planner_messages,
system=system,
model_name=self.model,
api_key=self.api_key,
max_tokens=min(2048, self.max_tokens),
provider_base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
temperature=0,
)
print(f"qwen token usage: {token_usage}")
self.total_token_usage += token_usage
self.total_cost += (token_usage * 2.2 / 1000000) # https://help.aliyun.com/zh/model-studio/getting-started/models?spm=a2c4g.11186623.0.0.74b04823CGnPv7#fe96cfb1a422a
else:
raise ValueError(f"Model {self.model} not supported")
latency_vlm = time.time() - start
self.output_callback(f"LLM: {latency_vlm:.2f}s, OmniParser: {latency_omniparser:.2f}s", sender="bot")
print(f"{vlm_response}")
if self.print_usage:
print(f"Total token so far: {self.total_token_usage}. Total cost so far: $USD{self.total_cost:.5f}")
vlm_response_json = extract_data(vlm_response, "json")
vlm_response_json = json.loads(vlm_response_json)
img_to_show_base64 = parsed_screen["som_image_base64"]
if "Box ID" in vlm_response_json:
try:
bbox = parsed_screen["parsed_content_list"][int(vlm_response_json["Box ID"])]["bbox"]
vlm_response_json["box_centroid_coordinate"] = [int((bbox[0] + bbox[2]) / 2 * screen_width), int((bbox[1] + bbox[3]) / 2 * screen_height)]
img_to_show_data = base64.b64decode(img_to_show_base64)
img_to_show = Image.open(BytesIO(img_to_show_data))
draw = ImageDraw.Draw(img_to_show)
x, y = vlm_response_json["box_centroid_coordinate"]
radius = 10
draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
draw.ellipse((x - radius*3, y - radius*3, x + radius*3, y + radius*3), fill=None, outline='red', width=2)
buffered = BytesIO()
img_to_show.save(buffered, format="PNG")
img_to_show_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
except:
print(f"Error parsing: {vlm_response_json}")
pass
self.output_callback(f'<img src="data:image/png;base64,{img_to_show_base64}">', sender="bot")
self.output_callback(
f'<details>'
f' <summary>Parsed Screen elemetns by OmniParser</summary>'
f' <pre>{screen_info}</pre>'
f'</details>',
sender="bot"
)
vlm_plan_str = ""
for key, value in vlm_response_json.items():
if key == "Reasoning":
vlm_plan_str += f'{value}'
else:
vlm_plan_str += f'\n{key}: {value}'
# construct the response so that anthropicExcutor can execute the tool
response_content = [BetaTextBlock(text=vlm_plan_str, type='text')]
if 'box_centroid_coordinate' in vlm_response_json:
move_cursor_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
input={'action': 'mouse_move', 'coordinate': vlm_response_json["box_centroid_coordinate"]},
name='computer', type='tool_use')
response_content.append(move_cursor_block)
if vlm_response_json["Next Action"] == "None":
print("Task paused/completed.")
elif vlm_response_json["Next Action"] == "type":
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
input={'action': vlm_response_json["Next Action"], 'text': vlm_response_json["value"]},
name='computer', type='tool_use')
response_content.append(sim_content_block)
else:
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
input={'action': vlm_response_json["Next Action"]},
name='computer', type='tool_use')
response_content.append(sim_content_block)
response_message = BetaMessage(id=f'toolu_{uuid.uuid4()}', content=response_content, model='', role='assistant', type='message', stop_reason='tool_use', usage=BetaUsage(input_tokens=0, output_tokens=0))
return response_message, vlm_response_json
def _api_response_callback(self, response: APIResponse):
self.api_response_callback(response)
def _get_system_prompt(self, screen_info: str = ""):
main_section = f"""
You are using a Windows device.
You are able to use a mouse and keyboard to interact with the computer based on the given task and screenshot.
You can only interact with the desktop GUI (no terminal or application menu access).
You may be given some history plan and actions, this is the response from the previous loop.
You should carefully consider your plan base on the task, screenshot, and history actions.
Here is the list of all detected bounding boxes by IDs on the screen and their description:{screen_info}
Your available "Next Action" only include:
- type: types a string of text.
- left_click: move mouse to box id and left clicks.
- right_click: move mouse to box id and right clicks.
- double_click: move mouse to box id and double clicks.
- hover: move mouse to box id.
- scroll_up: scrolls the screen up to view previous content.
- scroll_down: scrolls the screen down, when the desired button is not visible, or you need to see more content.
- wait: waits for 1 second for the device to load or respond.
Based on the visual information from the screenshot image and the detected bounding boxes, please determine the next action, the Box ID you should operate on (if action is one of 'type', 'hover', 'scroll_up', 'scroll_down', 'wait', there should be no Box ID field), and the value (if the action is 'type') in order to complete the task.
Output format:
```json
{{
"Reasoning": str, # describe what is in the current screen, taking into account the history, then describe your step-by-step thoughts on how to achieve the task, choose one action from available actions at a time.
"Next Action": "action_type, action description" | "None" # one action at a time, describe it in short and precisely.
"Box ID": n,
"value": "xxx" # only provide value field if the action is type, else don't include value key
}}
```
One Example:
```json
{{
"Reasoning": "The current screen shows google result of amazon, in previous action I have searched amazon on google. Then I need to click on the first search results to go to amazon.com.",
"Next Action": "left_click",
"Box ID": m
}}
```
Another Example:
```json
{{
"Reasoning": "The current screen shows the front page of amazon. There is no previous action. Therefore I need to type "Apple watch" in the search bar.",
"Next Action": "type",
"Box ID": n,
"value": "Apple watch"
}}
```
Another Example:
```json
{{
"Reasoning": "The current screen does not show 'submit' button, I need to scroll down to see if the button is available.",
"Next Action": "scroll_down",
}}
```
IMPORTANT NOTES:
1. You should only give a single action at a time.
"""
thinking_model = "r1" in self.model
if not thinking_model:
main_section += """
2. You should give an analysis to the current screen, and reflect on what has been done by looking at the history, then describe your step-by-step thoughts on how to achieve the task.
"""
else:
main_section += """
2. In <think> XML tags give an analysis to the current screen, and reflect on what has been done by looking at the history, then describe your step-by-step thoughts on how to achieve the task. In <output> XML tags put the next action prediction JSON.
"""
main_section += """
3. Attach the next action prediction in the "Next Action".
4. You should not include other actions, such as keyboard shortcuts.
5. When the task is completed, don't complete additional actions. You should say "Next Action": "None" in the json field.
6. The tasks involve buying multiple products or navigating through multiple pages. You should break it into subgoals and complete each subgoal one by one in the order of the instructions.
7. avoid choosing the same action/elements multiple times in a row, if it happens, reflect to yourself, what may have gone wrong, and predict a different action.
8. If you are prompted with login information page or captcha page, or you think it need user's permission to do the next action, you should say "Next Action": "None" in the json field.
"""
return main_section
def _remove_som_images(messages):
for msg in messages:
msg_content = msg["content"]
if isinstance(msg_content, list):
msg["content"] = [
cnt for cnt in msg_content
if not (isinstance(cnt, str) and 'som' in cnt and is_image_path(cnt))
]
def _maybe_filter_to_n_most_recent_images(
messages: list[BetaMessageParam],
images_to_keep: int,
min_removal_threshold: int = 10,
):
"""
With the assumption that images are screenshots that are of diminishing value as
the conversation progresses, remove all but the final `images_to_keep` tool_result
images in place
"""
if images_to_keep is None:
return messages
total_images = 0
for msg in messages:
for cnt in msg.get("content", []):
if isinstance(cnt, str) and is_image_path(cnt):
total_images += 1
elif isinstance(cnt, dict) and cnt.get("type") == "tool_result":
for content in cnt.get("content", []):
if isinstance(content, dict) and content.get("type") == "image":
total_images += 1
images_to_remove = total_images - images_to_keep
for msg in messages:
msg_content = msg["content"]
if isinstance(msg_content, list):
new_content = []
for cnt in msg_content:
# Remove images from SOM or screenshot as needed
if isinstance(cnt, str) and is_image_path(cnt):
if images_to_remove > 0:
images_to_remove -= 1
continue
# VLM shouldn't use anthropic screenshot tool so shouldn't have these but in case it does, remove as needed
elif isinstance(cnt, dict) and cnt.get("type") == "tool_result":
new_tool_result_content = []
for tool_result_entry in cnt.get("content", []):
if isinstance(tool_result_entry, dict) and tool_result_entry.get("type") == "image":
if images_to_remove > 0:
images_to_remove -= 1
continue
new_tool_result_content.append(tool_result_entry)
cnt["content"] = new_tool_result_content
# Append fixed content to current message's content list
new_content.append(cnt)
msg["content"] = new_content
\ No newline at end of file
"""
python app.py --windows_host_url localhost:8006 --omniparser_server_url localhost:8000
"""
import os
from datetime import datetime
from enum import StrEnum
from functools import partial
from pathlib import Path
from typing import cast
import argparse
import gradio as gr
from anthropic import APIResponse
from anthropic.types import TextBlock
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
from anthropic.types.tool_use_block import ToolUseBlock
from loop import (
APIProvider,
sampling_loop_sync,
)
from tools import ToolResult
import requests
from requests.exceptions import RequestException
import base64
CONFIG_DIR = Path("~/.anthropic").expanduser()
API_KEY_FILE = CONFIG_DIR / "api_key"
INTRO_TEXT = '''
OmniParser lets you turn any vision-langauge model into an AI agent. We currently support **OpenAI (4o/o1/o3-mini), DeepSeek (R1), Qwen (2.5VL) or Anthropic Computer Use (Sonnet).**
Type a message and press submit to start OmniTool. Press stop to pause, and press the trash icon in the chat to clear the message history.
'''
def parse_arguments():
parser = argparse.ArgumentParser(description="Gradio App")
parser.add_argument("--windows_host_url", type=str, default='localhost:8006')
parser.add_argument("--omniparser_server_url", type=str, default="localhost:8000")
return parser.parse_args()
args = parse_arguments()
class Sender(StrEnum):
USER = "user"
BOT = "assistant"
TOOL = "tool"
def setup_state(state):
if "messages" not in state:
state["messages"] = []
if "model" not in state:
state["model"] = "omniparser + gpt-4o"
if "provider" not in state:
state["provider"] = "openai"
if "openai_api_key" not in state: # Fetch API keys from environment variables
state["openai_api_key"] = os.getenv("OPENAI_API_KEY", "")
if "anthropic_api_key" not in state:
state["anthropic_api_key"] = os.getenv("ANTHROPIC_API_KEY", "")
if "api_key" not in state:
state["api_key"] = ""
if "auth_validated" not in state:
state["auth_validated"] = False
if "responses" not in state:
state["responses"] = {}
if "tools" not in state:
state["tools"] = {}
if "only_n_most_recent_images" not in state:
state["only_n_most_recent_images"] = 2
if 'chatbot_messages' not in state:
state['chatbot_messages'] = []
if 'stop' not in state:
state['stop'] = False
async def main(state):
"""Render loop for Gradio"""
setup_state(state)
return "Setup completed"
def validate_auth(provider: APIProvider, api_key: str | None):
if provider == APIProvider.ANTHROPIC:
if not api_key:
return "Enter your Anthropic API key to continue."
if provider == APIProvider.BEDROCK:
import boto3
if not boto3.Session().get_credentials():
return "You must have AWS credentials set up to use the Bedrock API."
if provider == APIProvider.VERTEX:
import google.auth
from google.auth.exceptions import DefaultCredentialsError
if not os.environ.get("CLOUD_ML_REGION"):
return "Set the CLOUD_ML_REGION environment variable to use the Vertex API."
try:
google.auth.default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
except DefaultCredentialsError:
return "Your google cloud credentials are not set up correctly."
def load_from_storage(filename: str) -> str | None:
"""Load data from a file in the storage directory."""
try:
file_path = CONFIG_DIR / filename
if file_path.exists():
data = file_path.read_text().strip()
if data:
return data
except Exception as e:
print(f"Debug: Error loading {filename}: {e}")
return None
def save_to_storage(filename: str, data: str) -> None:
"""Save data to a file in the storage directory."""
try:
CONFIG_DIR.mkdir(parents=True, exist_ok=True)
file_path = CONFIG_DIR / filename
file_path.write_text(data)
# Ensure only user can read/write the file
file_path.chmod(0o600)
except Exception as e:
print(f"Debug: Error saving {filename}: {e}")
def _api_response_callback(response: APIResponse[BetaMessage], response_state: dict):
response_id = datetime.now().isoformat()
response_state[response_id] = response
def _tool_output_callback(tool_output: ToolResult, tool_id: str, tool_state: dict):
tool_state[tool_id] = tool_output
def chatbot_output_callback(message, chatbot_state, hide_images=False, sender="bot"):
def _render_message(message: str | BetaTextBlock | BetaToolUseBlock | ToolResult, hide_images=False):
print(f"_render_message: {str(message)[:100]}")
if isinstance(message, str):
return message
is_tool_result = not isinstance(message, str) and (
isinstance(message, ToolResult)
or message.__class__.__name__ == "ToolResult"
)
if not message or (
is_tool_result
and hide_images
and not hasattr(message, "error")
and not hasattr(message, "output")
): # return None if hide_images is True
return
# render tool result
if is_tool_result:
message = cast(ToolResult, message)
if message.output:
return message.output
if message.error:
return f"Error: {message.error}"
if message.base64_image and not hide_images:
# somehow can't display via gr.Image
# image_data = base64.b64decode(message.base64_image)
# return gr.Image(value=Image.open(io.BytesIO(image_data)))
return f'<img src="data:image/png;base64,{message.base64_image}">'
elif isinstance(message, BetaTextBlock) or isinstance(message, TextBlock):
return f"Analysis: {message.text}"
elif isinstance(message, BetaToolUseBlock) or isinstance(message, ToolUseBlock):
# return f"Tool Use: {message.name}\nInput: {message.input}"
return f"Next I will perform the following action: {message.input}"
else:
return message
def _truncate_string(s, max_length=500):
"""Truncate long strings for concise printing."""
if isinstance(s, str) and len(s) > max_length:
return s[:max_length] + "..."
return s
# processing Anthropic messages
message = _render_message(message, hide_images)
if sender == "bot":
chatbot_state.append((None, message))
else:
chatbot_state.append((message, None))
# Create a concise version of the chatbot state for printing
concise_state = [(_truncate_string(user_msg), _truncate_string(bot_msg))
for user_msg, bot_msg in chatbot_state]
# print(f"chatbot_output_callback chatbot_state: {concise_state} (truncated)")
def valid_params(user_input, state):
"""Validate all requirements and return a list of error messages."""
errors = []
for server_name, url in [('Windows Host', 'localhost:5000'), ('OmniParser Server', args.omniparser_server_url)]:
try:
url = f'http://{url}/probe'
response = requests.get(url, timeout=3)
if response.status_code != 200:
errors.append(f"{server_name} is not responding")
except RequestException as e:
errors.append(f"{server_name} is not responding")
if not state["api_key"].strip():
errors.append("LLM API Key is not set")
if not user_input:
errors.append("no computer use request provided")
return errors
def process_input(user_input, state):
# Reset the stop flag
if state["stop"]:
state["stop"] = False
errors = valid_params(user_input, state)
if errors:
raise gr.Error("Validation errors: " + ", ".join(errors))
# Append the user message to state["messages"]
state["messages"].append(
{
"role": Sender.USER,
"content": [TextBlock(type="text", text=user_input)],
}
)
# Append the user's message to chatbot_messages with None for the assistant's reply
state['chatbot_messages'].append((user_input, None))
yield state['chatbot_messages'] # Yield to update the chatbot UI with the user's message
print("state")
print(state)
# Run sampling_loop_sync with the chatbot_output_callback
for loop_msg in sampling_loop_sync(
model=state["model"],
provider=state["provider"],
messages=state["messages"],
output_callback=partial(chatbot_output_callback, chatbot_state=state['chatbot_messages'], hide_images=False),
tool_output_callback=partial(_tool_output_callback, tool_state=state["tools"]),
api_response_callback=partial(_api_response_callback, response_state=state["responses"]),
api_key=state["api_key"],
only_n_most_recent_images=state["only_n_most_recent_images"],
max_tokens=16384,
omniparser_url=args.omniparser_server_url
):
if loop_msg is None or state.get("stop"):
yield state['chatbot_messages']
print("End of task. Close the loop.")
break
yield state['chatbot_messages'] # Yield the updated chatbot_messages to update the chatbot UI
def stop_app(state):
state["stop"] = True
return "App stopped"
def get_header_image_base64():
try:
# Get the absolute path to the image relative to this script
script_dir = Path(__file__).parent
image_path = script_dir.parent.parent / "imgs" / "header_bar_thin.png"
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f'data:image/png;base64,{encoded_string}'
except Exception as e:
print(f"Failed to load header image: {e}")
return None
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.HTML("""
<style>
.no-padding {
padding: 0 !important;
}
.no-padding > div {
padding: 0 !important;
}
.markdown-text p {
font-size: 18px; /* Adjust the font size as needed */
}
</style>
""")
state = gr.State({})
setup_state(state.value)
header_image = get_header_image_base64()
if header_image:
gr.HTML(f'<img src="{header_image}" alt="OmniTool Header" width="100%">', elem_classes="no-padding")
gr.HTML('<h1 style="text-align: center; font-weight: normal;">Omni<span style="font-weight: bold;">Tool</span></h1>')
else:
gr.Markdown("# OmniTool")
if not os.getenv("HIDE_WARNING", False):
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
with gr.Accordion("Settings", open=True):
with gr.Row():
with gr.Column():
model = gr.Dropdown(
label="Model",
choices=["omniparser + gpt-4o", "omniparser + o1", "omniparser + o3-mini", "omniparser + R1", "omniparser + qwen2.5vl", "claude-3-5-sonnet-20241022"],
value="omniparser + gpt-4o",
interactive=True,
)
with gr.Column():
only_n_images = gr.Slider(
label="N most recent screenshots",
minimum=0,
maximum=10,
step=1,
value=2,
interactive=True
)
with gr.Row():
with gr.Column(1):
provider = gr.Dropdown(
label="API Provider",
choices=[option.value for option in APIProvider],
value="openai",
interactive=False,
)
with gr.Column(2):
api_key = gr.Textbox(
label="API Key",
type="password",
value=state.value.get("api_key", ""),
placeholder="Paste your API key here",
interactive=True,
)
with gr.Row():
with gr.Column(scale=8):
chat_input = gr.Textbox(show_label=False, placeholder="Type a message to send to Omniparser + X ...", container=False)
with gr.Column(scale=1, min_width=50):
submit_button = gr.Button(value="Send", variant="primary")
with gr.Column(scale=1, min_width=50):
stop_button = gr.Button(value="Stop", variant="secondary")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label="Chatbot History", autoscroll=True, height=580)
with gr.Column(scale=3):
iframe = gr.HTML(
f'<iframe src="http://{args.windows_host_url}/vnc.html?view_only=1&autoconnect=1&resize=scale" width="100%" height="580" allow="fullscreen"></iframe>',
container=False,
elem_classes="no-padding"
)
def update_model(model_selection, state):
state["model"] = model_selection
print(f"Model updated to: {state['model']}")
if model_selection == "claude-3-5-sonnet-20241022":
provider_choices = [option.value for option in APIProvider if option.value != "openai"]
elif model_selection in set(["omniparser + gpt-4o", "omniparser + o1", "omniparser + o3-mini"]):
provider_choices = ["openai"]
elif model_selection == "omniparser + R1":
provider_choices = ["groq"]
elif model_selection == "omniparser + qwen2.5vl":
provider_choices = ["dashscope"]
else:
provider_choices = [option.value for option in APIProvider]
default_provider_value = provider_choices[0]
provider_interactive = len(provider_choices) > 1
api_key_placeholder = f"{default_provider_value.title()} API Key"
# Update state
state["provider"] = default_provider_value
state["api_key"] = state.get(f"{default_provider_value}_api_key", "")
# Calls to update other components UI
provider_update = gr.update(
choices=provider_choices,
value=default_provider_value,
interactive=provider_interactive
)
api_key_update = gr.update(
placeholder=api_key_placeholder,
value=state["api_key"]
)
return provider_update, api_key_update
def update_only_n_images(only_n_images_value, state):
state["only_n_most_recent_images"] = only_n_images_value
def update_provider(provider_value, state):
# Update state
state["provider"] = provider_value
state["api_key"] = state.get(f"{provider_value}_api_key", "")
# Calls to update other components UI
api_key_update = gr.update(
placeholder=f"{provider_value.title()} API Key",
value=state["api_key"]
)
return api_key_update
def update_api_key(api_key_value, state):
state["api_key"] = api_key_value
state[f'{state["provider"]}_api_key'] = api_key_value
def clear_chat(state):
# Reset message-related state
state["messages"] = []
state["responses"] = {}
state["tools"] = {}
state['chatbot_messages'] = []
return state['chatbot_messages']
model.change(fn=update_model, inputs=[model, state], outputs=[provider, api_key])
only_n_images.change(fn=update_only_n_images, inputs=[only_n_images, state], outputs=None)
provider.change(fn=update_provider, inputs=[provider, state], outputs=api_key)
api_key.change(fn=update_api_key, inputs=[api_key, state], outputs=None)
chatbot.clear(fn=clear_chat, inputs=[state], outputs=[chatbot])
submit_button.click(process_input, [chat_input, state], chatbot)
stop_button.click(stop_app, [state], None)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7888)
\ No newline at end of file
import asyncio
from typing import Any, Dict, cast
from collections.abc import Callable
from anthropic.types.beta import (
BetaContentBlock,
BetaContentBlockParam,
BetaImageBlockParam,
BetaMessage,
BetaMessageParam,
BetaTextBlockParam,
BetaToolResultBlockParam,
)
from anthropic.types import TextBlock
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock
from tools import ComputerTool, ToolCollection, ToolResult
class AnthropicExecutor:
def __init__(
self,
output_callback: Callable[[BetaContentBlockParam], None],
tool_output_callback: Callable[[Any, str], None],
):
self.tool_collection = ToolCollection(
ComputerTool()
)
self.output_callback = output_callback
self.tool_output_callback = tool_output_callback
def __call__(self, response: BetaMessage, messages: list[BetaMessageParam]):
new_message = {
"role": "assistant",
"content": cast(list[BetaContentBlockParam], response.content),
}
if new_message not in messages:
messages.append(new_message)
else:
print("new_message already in messages, there are duplicates.")
tool_result_content: list[BetaToolResultBlockParam] = []
for content_block in cast(list[BetaContentBlock], response.content):
self.output_callback(content_block, sender="bot")
# Execute the tool
if content_block.type == "tool_use":
# Run the asynchronous tool execution in a synchronous context
result = asyncio.run(self.tool_collection.run(
name=content_block.name,
tool_input=cast(dict[str, Any], content_block.input),
))
self.output_callback(result, sender="bot")
tool_result_content.append(
_make_api_tool_result(result, content_block.id)
)
self.tool_output_callback(result, content_block.id)
# Craft messages based on the content_block
# Note: to display the messages in the gradio, you should organize the messages in the following way (user message, bot message)
display_messages = _message_display_callback(messages)
# display_messages = []
# Send the messages to the gradio
for user_msg, bot_msg in display_messages:
# yield [user_msg, bot_msg], tool_result_content
yield [None, None], tool_result_content
if not tool_result_content:
return messages
return tool_result_content
def _message_display_callback(messages):
display_messages = []
for msg in messages:
try:
if isinstance(msg["content"][0], TextBlock):
display_messages.append((msg["content"][0].text, None)) # User message
elif isinstance(msg["content"][0], BetaTextBlock):
display_messages.append((None, msg["content"][0].text)) # Bot message
elif isinstance(msg["content"][0], BetaToolUseBlock):
display_messages.append((None, f"Tool Use: {msg['content'][0].name}\nInput: {msg['content'][0].input}")) # Bot message
elif isinstance(msg["content"][0], Dict) and msg["content"][0]["content"][-1]["type"] == "image":
display_messages.append((None, f'<img src="data:image/png;base64,{msg["content"][0]["content"][-1]["source"]["data"]}">')) # Bot message
else:
print(msg["content"][0])
except Exception as e:
print("error", e)
pass
return display_messages
def _make_api_tool_result(
result: ToolResult, tool_use_id: str
) -> BetaToolResultBlockParam:
"""Convert an agent ToolResult to an API ToolResultBlockParam."""
tool_result_content: list[BetaTextBlockParam | BetaImageBlockParam] | str = []
is_error = False
if result.error:
is_error = True
tool_result_content = _maybe_prepend_system_tool_result(result, result.error)
else:
if result.output:
tool_result_content.append(
{
"type": "text",
"text": _maybe_prepend_system_tool_result(result, result.output),
}
)
if result.base64_image:
tool_result_content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": result.base64_image,
},
}
)
return {
"type": "tool_result",
"content": tool_result_content,
"tool_use_id": tool_use_id,
"is_error": is_error,
}
def _maybe_prepend_system_tool_result(result: ToolResult, result_text: str):
if result.system:
result_text = f"<system>{result.system}</system>\n{result_text}"
return result_text
\ No newline at end of file
"""
Agentic sampling loop that calls the Anthropic API and local implenmentation of anthropic-defined computer use tools.
"""
from collections.abc import Callable
from enum import StrEnum
from anthropic import APIResponse
from anthropic.types import (
TextBlock,
)
from anthropic.types.beta import (
BetaContentBlock,
BetaMessage,
BetaMessageParam
)
from tools import ToolResult
from agent.llm_utils.omniparserclient import OmniParserClient
from agent.anthropic_agent import AnthropicActor
from agent.vlm_agent import VLMAgent
from executor.anthropic_executor import AnthropicExecutor
BETA_FLAG = "computer-use-2024-10-22"
class APIProvider(StrEnum):
ANTHROPIC = "anthropic"
BEDROCK = "bedrock"
VERTEX = "vertex"
OPENAI = "openai"
PROVIDER_TO_DEFAULT_MODEL_NAME: dict[APIProvider, str] = {
APIProvider.ANTHROPIC: "claude-3-5-sonnet-20241022",
APIProvider.BEDROCK: "anthropic.claude-3-5-sonnet-20241022-v2:0",
APIProvider.VERTEX: "claude-3-5-sonnet-v2@20241022",
APIProvider.OPENAI: "gpt-4o",
}
def sampling_loop_sync(
*,
model: str,
provider: APIProvider | None,
messages: list[BetaMessageParam],
output_callback: Callable[[BetaContentBlock], None],
tool_output_callback: Callable[[ToolResult, str], None],
api_response_callback: Callable[[APIResponse[BetaMessage]], None],
api_key: str,
only_n_most_recent_images: int | None = 2,
max_tokens: int = 4096,
omniparser_url: str
):
"""
Synchronous agentic sampling loop for the assistant/tool interaction of computer use.
"""
print('in sampling_loop_sync, model:', model)
omniparser_client = OmniParserClient(url=f"http://{omniparser_url}/parse/")
if model == "claude-3-5-sonnet-20241022":
# Register Actor and Executor
actor = AnthropicActor(
model=model,
provider=provider,
api_key=api_key,
api_response_callback=api_response_callback,
max_tokens=max_tokens,
only_n_most_recent_images=only_n_most_recent_images
)
elif model in set(["omniparser + gpt-4o", "omniparser + o1", "omniparser + o3-mini", "omniparser + R1", "omniparser + qwen2.5vl"]):
actor = VLMAgent(
model=model,
provider=provider,
api_key=api_key,
api_response_callback=api_response_callback,
output_callback=output_callback,
max_tokens=max_tokens,
only_n_most_recent_images=only_n_most_recent_images
)
else:
raise ValueError(f"Model {model} not supported")
executor = AnthropicExecutor(
output_callback=output_callback,
tool_output_callback=tool_output_callback,
)
print(f"Model Inited: {model}, Provider: {provider}")
tool_result_content = None
print(f"Start the message loop. User messages: {messages}")
if model == "claude-3-5-sonnet-20241022": # Anthropic loop
while True:
parsed_screen = omniparser_client() # parsed_screen: {"som_image_base64": dino_labled_img, "parsed_content_list": parsed_content_list, "screen_info"}
screen_info_block = TextBlock(text='Below is the structured accessibility information of the current UI screen, which includes text and icons you can operate on, take these information into account when you are making the prediction for the next action. Note you will still need to take screenshot to get the image: \n' + parsed_screen['screen_info'], type='text')
screen_info_dict = {"role": "user", "content": [screen_info_block]}
messages.append(screen_info_dict)
tools_use_needed = actor(messages=messages)
for message, tool_result_content in executor(tools_use_needed, messages):
yield message
if not tool_result_content:
return messages
messages.append({"content": tool_result_content, "role": "user"})
elif model in set(["omniparser + gpt-4o", "omniparser + o1", "omniparser + o3-mini", "omniparser + R1", "omniparser + qwen2.5vl"]):
while True:
parsed_screen = omniparser_client()
tools_use_needed, vlm_response_json = actor(messages=messages, parsed_screen=parsed_screen)
for message, tool_result_content in executor(tools_use_needed, messages):
yield message
if not tool_result_content:
return messages
\ No newline at end of file
from .base import ToolResult
from .collection import ToolCollection
from .computer import ComputerTool
from .screen_capture import get_screenshot
__ALL__ = [
ComputerTool,
ToolCollection,
ToolResult,
get_screenshot,
]
from abc import ABCMeta, abstractmethod
from dataclasses import dataclass, fields, replace
from typing import Any
from anthropic.types.beta import BetaToolUnionParam
class BaseAnthropicTool(metaclass=ABCMeta):
"""Abstract base class for Anthropic-defined tools."""
@abstractmethod
def __call__(self, **kwargs) -> Any:
"""Executes the tool with the given arguments."""
...
@abstractmethod
def to_params(
self,
) -> BetaToolUnionParam:
raise NotImplementedError
@dataclass(kw_only=True, frozen=True)
class ToolResult:
"""Represents the result of a tool execution."""
output: str | None = None
error: str | None = None
base64_image: str | None = None
system: str | None = None
def __bool__(self):
return any(getattr(self, field.name) for field in fields(self))
def __add__(self, other: "ToolResult"):
def combine_fields(
field: str | None, other_field: str | None, concatenate: bool = True
):
if field and other_field:
if concatenate:
return field + other_field
raise ValueError("Cannot combine tool results")
return field or other_field
return ToolResult(
output=combine_fields(self.output, other.output),
error=combine_fields(self.error, other.error),
base64_image=combine_fields(self.base64_image, other.base64_image, False),
system=combine_fields(self.system, other.system),
)
def replace(self, **kwargs):
"""Returns a new ToolResult with the given fields replaced."""
return replace(self, **kwargs)
class ToolFailure(ToolResult):
"""A ToolResult that represents a failure."""
class ToolError(Exception):
"""Raised when a tool encounters an error."""
def __init__(self, message):
self.message = message
"""Collection classes for managing multiple tools."""
from typing import Any
from anthropic.types.beta import BetaToolUnionParam
from .base import (
BaseAnthropicTool,
ToolError,
ToolFailure,
ToolResult,
)
class ToolCollection:
"""A collection of anthropic-defined tools."""
def __init__(self, *tools: BaseAnthropicTool):
self.tools = tools
self.tool_map = {tool.to_params()["name"]: tool for tool in tools}
def to_params(
self,
) -> list[BetaToolUnionParam]:
return [tool.to_params() for tool in self.tools]
async def run(self, *, name: str, tool_input: dict[str, Any]) -> ToolResult:
tool = self.tool_map.get(name)
if not tool:
return ToolFailure(error=f"Tool {name} is invalid")
try:
return await tool(**tool_input)
except ToolError as e:
return ToolFailure(error=e.message)
import base64
import time
from enum import StrEnum
from typing import Literal, TypedDict
from PIL import Image
from anthropic.types.beta import BetaToolComputerUse20241022Param
from .base import BaseAnthropicTool, ToolError, ToolResult
from .screen_capture import get_screenshot
import requests
import re
OUTPUT_DIR = "./tmp/outputs"
TYPING_DELAY_MS = 12
TYPING_GROUP_SIZE = 50
Action = Literal[
"key",
"type",
"mouse_move",
"left_click",
"left_click_drag",
"right_click",
"middle_click",
"double_click",
"screenshot",
"cursor_position",
"hover",
"wait"
]
class Resolution(TypedDict):
width: int
height: int
MAX_SCALING_TARGETS: dict[str, Resolution] = {
"XGA": Resolution(width=1024, height=768), # 4:3
"WXGA": Resolution(width=1280, height=800), # 16:10
"FWXGA": Resolution(width=1366, height=768), # ~16:9
}
class ScalingSource(StrEnum):
COMPUTER = "computer"
API = "api"
class ComputerToolOptions(TypedDict):
display_height_px: int
display_width_px: int
display_number: int | None
def chunks(s: str, chunk_size: int) -> list[str]:
return [s[i : i + chunk_size] for i in range(0, len(s), chunk_size)]
class ComputerTool(BaseAnthropicTool):
"""
A tool that allows the agent to interact with the screen, keyboard, and mouse of the current computer.
Adapted for Windows using 'pyautogui'.
"""
name: Literal["computer"] = "computer"
api_type: Literal["computer_20241022"] = "computer_20241022"
width: int
height: int
display_num: int | None
_screenshot_delay = 2.0
_scaling_enabled = True
@property
def options(self) -> ComputerToolOptions:
width, height = self.scale_coordinates(
ScalingSource.COMPUTER, self.width, self.height
)
return {
"display_width_px": width,
"display_height_px": height,
"display_number": self.display_num,
}
def to_params(self) -> BetaToolComputerUse20241022Param:
return {"name": self.name, "type": self.api_type, **self.options}
def __init__(self, is_scaling: bool = False):
super().__init__()
# Get screen width and height using Windows command
self.display_num = None
self.offset_x = 0
self.offset_y = 0
self.is_scaling = is_scaling
self.width, self.height = self.get_screen_size()
print(f"screen size: {self.width}, {self.height}")
self.key_conversion = {"Page_Down": "pagedown",
"Page_Up": "pageup",
"Super_L": "win",
"Escape": "esc"}
async def __call__(
self,
*,
action: Action,
text: str | None = None,
coordinate: tuple[int, int] | None = None,
**kwargs,
):
print(f"action: {action}, text: {text}, coordinate: {coordinate}, is_scaling: {self.is_scaling}")
if action in ("mouse_move", "left_click_drag"):
if coordinate is None:
raise ToolError(f"coordinate is required for {action}")
if text is not None:
raise ToolError(f"text is not accepted for {action}")
if not isinstance(coordinate, (list, tuple)) or len(coordinate) != 2:
raise ToolError(f"{coordinate} must be a tuple of length 2")
# if not all(isinstance(i, int) and i >= 0 for i in coordinate):
if not all(isinstance(i, int) for i in coordinate):
raise ToolError(f"{coordinate} must be a tuple of non-negative ints")
if self.is_scaling:
x, y = self.scale_coordinates(
ScalingSource.API, coordinate[0], coordinate[1]
)
else:
x, y = coordinate
# print(f"scaled_coordinates: {x}, {y}")
# print(f"offset: {self.offset_x}, {self.offset_y}")
# x += self.offset_x # TODO - check if this is needed
# y += self.offset_y
print(f"mouse move to {x}, {y}")
if action == "mouse_move":
self.send_to_vm(f"pyautogui.moveTo({x}, {y})")
return ToolResult(output=f"Moved mouse to ({x}, {y})")
elif action == "left_click_drag":
current_x, current_y = self.send_to_vm("pyautogui.position()")
self.send_to_vm(f"pyautogui.dragTo({x}, {y}, duration=0.5)")
return ToolResult(output=f"Dragged mouse from ({current_x}, {current_y}) to ({x}, {y})")
if action in ("key", "type"):
if text is None:
raise ToolError(f"text is required for {action}")
if coordinate is not None:
raise ToolError(f"coordinate is not accepted for {action}")
if not isinstance(text, str):
raise ToolError(output=f"{text} must be a string")
if action == "key":
# Handle key combinations
keys = text.split('+')
for key in keys:
key = self.key_conversion.get(key.strip(), key.strip())
key = key.lower()
self.send_to_vm(f"pyautogui.keyDown('{key}')") # Press down each key
for key in reversed(keys):
key = self.key_conversion.get(key.strip(), key.strip())
key = key.lower()
self.send_to_vm(f"pyautogui.keyUp('{key}')") # Release each key in reverse order
return ToolResult(output=f"Pressed keys: {text}")
elif action == "type":
# default click before type TODO: check if this is needed
self.send_to_vm("pyautogui.click()")
self.send_to_vm(f"pyautogui.typewrite('{text}', interval={TYPING_DELAY_MS / 1000})")
self.send_to_vm("pyautogui.press('enter')")
screenshot_base64 = (await self.screenshot()).base64_image
return ToolResult(output=text, base64_image=screenshot_base64)
if action in (
"left_click",
"right_click",
"double_click",
"middle_click",
"screenshot",
"cursor_position",
"left_press",
):
if text is not None:
raise ToolError(f"text is not accepted for {action}")
if coordinate is not None:
raise ToolError(f"coordinate is not accepted for {action}")
if action == "screenshot":
return await self.screenshot()
elif action == "cursor_position":
x, y = self.send_to_vm("pyautogui.position()")
x, y = self.scale_coordinates(ScalingSource.COMPUTER, x, y)
return ToolResult(output=f"X={x},Y={y}")
else:
if action == "left_click":
self.send_to_vm("pyautogui.click()")
elif action == "right_click":
self.send_to_vm("pyautogui.rightClick()")
elif action == "middle_click":
self.send_to_vm("pyautogui.middleClick()")
elif action == "double_click":
self.send_to_vm("pyautogui.doubleClick()")
elif action == "left_press":
self.send_to_vm("pyautogui.mouseDown()")
time.sleep(1)
self.send_to_vm("pyautogui.mouseUp()")
return ToolResult(output=f"Performed {action}")
if action in ("scroll_up", "scroll_down"):
if action == "scroll_up":
self.send_to_vm("pyautogui.scroll(100)")
elif action == "scroll_down":
self.send_to_vm("pyautogui.scroll(-100)")
return ToolResult(output=f"Performed {action}")
if action == "hover":
return ToolResult(output=f"Performed {action}")
if action == "wait":
time.sleep(1)
return ToolResult(output=f"Performed {action}")
raise ToolError(f"Invalid action: {action}")
def send_to_vm(self, action: str):
"""
Executes a python command on the server. Only return tuple of x,y when action is "pyautogui.position()"
"""
prefix = "import pyautogui; pyautogui.FAILSAFE = False;"
command_list = ["python", "-c", f"{prefix} {action}"]
parse = action == "pyautogui.position()"
if parse:
command_list[-1] = f"{prefix} print({action})"
try:
print(f"sending to vm: {command_list}")
response = requests.post(
f"http://localhost:5000/execute",
headers={'Content-Type': 'application/json'},
json={"command": command_list},
timeout=90
)
time.sleep(0.7) # avoid async error as actions take time to complete
print(f"action executed")
if response.status_code != 200:
raise ToolError(f"Failed to execute command. Status code: {response.status_code}")
if parse:
output = response.json()['output'].strip()
match = re.search(r'Point\(x=(\d+),\s*y=(\d+)\)', output)
if not match:
raise ToolError(f"Could not parse coordinates from output: {output}")
x, y = map(int, match.groups())
return x, y
except requests.exceptions.RequestException as e:
raise ToolError(f"An error occurred while trying to execute the command: {str(e)}")
async def screenshot(self):
if not hasattr(self, 'target_dimension'):
screenshot = self.padding_image(screenshot)
self.target_dimension = MAX_SCALING_TARGETS["WXGA"]
width, height = self.target_dimension["width"], self.target_dimension["height"]
screenshot, path = get_screenshot(resize=True, target_width=width, target_height=height)
time.sleep(0.7) # avoid async error as actions take time to complete
return ToolResult(base64_image=base64.b64encode(path.read_bytes()).decode())
def padding_image(self, screenshot):
"""Pad the screenshot to 16:10 aspect ratio, when the aspect ratio is not 16:10."""
_, height = screenshot.size
new_width = height * 16 // 10
padding_image = Image.new("RGB", (new_width, height), (255, 255, 255))
# padding to top left
padding_image.paste(screenshot, (0, 0))
return padding_image
def scale_coordinates(self, source: ScalingSource, x: int, y: int):
"""Scale coordinates to a target maximum resolution."""
if not self._scaling_enabled:
return x, y
ratio = self.width / self.height
target_dimension = None
for target_name, dimension in MAX_SCALING_TARGETS.items():
# allow some error in the aspect ratio - not ratios are exactly 16:9
if abs(dimension["width"] / dimension["height"] - ratio) < 0.02:
if dimension["width"] < self.width:
target_dimension = dimension
self.target_dimension = target_dimension
# print(f"target_dimension: {target_dimension}")
break
if target_dimension is None:
# TODO: currently we force the target to be WXGA (16:10), when it cannot find a match
target_dimension = MAX_SCALING_TARGETS["WXGA"]
self.target_dimension = MAX_SCALING_TARGETS["WXGA"]
# should be less than 1
x_scaling_factor = target_dimension["width"] / self.width
y_scaling_factor = target_dimension["height"] / self.height
if source == ScalingSource.API:
if x > self.width or y > self.height:
raise ToolError(f"Coordinates {x}, {y} are out of bounds")
# scale up
return round(x / x_scaling_factor), round(y / y_scaling_factor)
# scale down
return round(x * x_scaling_factor), round(y * y_scaling_factor)
def get_screen_size(self):
"""Return width and height of the screen"""
try:
response = requests.post(
f"http://localhost:5000/execute",
headers={'Content-Type': 'application/json'},
json={"command": ["python", "-c", "import pyautogui; print(pyautogui.size())"]},
timeout=90
)
if response.status_code != 200:
raise ToolError(f"Failed to get screen size. Status code: {response.status_code}")
output = response.json()['output'].strip()
match = re.search(r'Size\(width=(\d+),\s*height=(\d+)\)', output)
if not match:
raise ToolError(f"Could not parse screen size from output: {output}")
width, height = map(int, match.groups())
return width, height
except requests.exceptions.RequestException as e:
raise ToolError(f"An error occurred while trying to get screen size: {str(e)}")
\ No newline at end of file
from pathlib import Path
from uuid import uuid4
import requests
from PIL import Image
from .base import BaseAnthropicTool, ToolError
from io import BytesIO
OUTPUT_DIR = "./tmp/outputs"
def get_screenshot(resize: bool = False, target_width: int = 1920, target_height: int = 1080):
"""Capture screenshot by requesting from HTTP endpoint - returns native resolution unless resized"""
output_dir = Path(OUTPUT_DIR)
output_dir.mkdir(parents=True, exist_ok=True)
path = output_dir / f"screenshot_{uuid4().hex}.png"
try:
response = requests.get('http://localhost:5000/screenshot')
if response.status_code != 200:
raise ToolError(f"Failed to capture screenshot: HTTP {response.status_code}")
# (1280, 800)
screenshot = Image.open(BytesIO(response.content))
if resize and screenshot.size != (target_width, target_height):
screenshot = screenshot.resize((target_width, target_height))
screenshot.save(path)
return screenshot, path
except Exception as e:
raise ToolError(f"Failed to capture screenshot: {str(e)}")
\ No newline at end of file
vm/win11iso/custom.iso
vm/win11storage
vm/win11setup/setupscripts/firstboot_log.txt
vm/win11setup/setupscripts/server/server.log
ARG VERSION_ARG="latest"
FROM scratch AS build-amd64
COPY --from=qemux/qemu-docker:6.08 / /
ARG DEBCONF_NOWARNINGS="yes"
ARG DEBIAN_FRONTEND="noninteractive"
ARG DEBCONF_NONINTERACTIVE_SEEN="true"
RUN set -eu && \
apt-get update && \
apt-get --no-install-recommends -y install \
bc \
jq \
curl \
7zip \
wsdd \
samba \
xz-utils \
wimtools \
dos2unix \
cabextract \
genisoimage \
libxml2-utils \
libarchive-tools && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
COPY --chmod=755 ./vm/buildcontainer /run/
RUN dos2unix /run/*
COPY --chmod=755 ./vm/win11def /run/assets
RUN dos2unix /run/assets/*
ADD --chmod=755 https://raw.githubusercontent.com/christgau/wsdd/v0.8/src/wsdd.py /usr/sbin/wsdd
ADD --chmod=664 https://github.com/qemus/virtiso-whql/releases/download/v1.9.43-0/virtio-win-1.9.43.tar.xz /drivers.txz
FROM dockurr/windows-arm:${VERSION_ARG} AS build-arm64
FROM build-${TARGETARCH}
ARG VERSION_ARG="0.00"
RUN echo "$VERSION_ARG" > /run/version
EXPOSE 8006 3389
ENV VERSION="win11e"
ENTRYPOINT ["/usr/bin/tini", "-s", "/run/entry.sh"]
\ No newline at end of file
services:
windows:
image: windows-local
container_name: omni-windows
privileged: true
environment:
RAM_SIZE: "8G"
CPU_CORES: "4"
DISK_SIZE: "20G"
devices:
- /dev/kvm
- /dev/net/tun
cap_add:
- NET_ADMIN
ports:
- 8006:8006 # Web Viewer access
- 5000:5000 # Computer control server
volumes:
- ./vm/win11iso/custom.iso:/custom.iso
- ./vm/win11setup/firstboot:/oem
- ./vm/win11setup/setupscripts:/data
- ./vm/win11storage:/storage
\ No newline at end of file
function Create-VM {
if (-not (docker images windows-local -q)) {
Write-Host "Image not found locally. Building..."
docker build -t windows-local ..
} else {
Write-Host "Image found locally. Skipping build."
}
docker compose -f ../compose.yml up -d
while ($true) {
try {
$response = Invoke-WebRequest -Uri "http://localhost:5000/probe" -Method GET -UseBasicParsing
if ($response.StatusCode -eq 200) {
break
}
} catch {
Write-Host "Waiting for a response from the computer control server. When first building the VM storage folder this can take a while..."
Start-Sleep -Seconds 5
}
}
Write-Host "VM + server is up and running!"
}
function Start-LocalVM {
Write-Host "Starting VM..."
docker compose -f ../compose.yml start
while ($true) {
try {
$response = Invoke-WebRequest -Uri "http://localhost:5000/probe" -Method GET -UseBasicParsing
if ($response.StatusCode -eq 200) {
break
}
} catch {
Write-Host "Waiting for a response from the computer control server"
Start-Sleep -Seconds 5
}
}
Write-Host "VM started"
}
function Stop-LocalVM {
Write-Host "Stopping VM..."
docker compose -f ../compose.yml stop
Write-Host "VM stopped"
}
function Remove-VM {
Write-Host "Removing VM and associated containers..."
docker compose -f ../compose.yml down
Write-Host "VM removed"
}
if (-not $args[0]) {
Write-Host "Usage: $($MyInvocation.MyCommand.Name) [create|start|stop|delete]"
exit 1
}
switch ($args[0]) {
"create" { Create-VM }
"start" { Start-LocalVM }
"stop" { Stop-LocalVM }
"delete" { Remove-VM }
default {
Write-Host "Invalid option: $($args[0])"
Write-Host "Usage: $($MyInvocation.MyCommand.Name) [create|start|stop|delete]"
exit 1
}
}
\ No newline at end of file
#!/bin/bash
create_vm() {
if ! docker images windows-local -q | grep -q .; then
echo "Image not found locally. Building..."
docker build -t windows-local ..
else
echo "Image found locally. Skipping build."
fi
docker compose -f ../compose.yml up -d
# Wait for the VM to start up
while true; do
response=$(curl --write-out '%{http_code}' --silent --output /dev/null localhost:5000/probe)
if [ $response -eq 200 ]; then
break
fi
echo "Waiting for a response from the computer control server. When first building the VM storage folder this can take a while..."
sleep 5
done
echo "VM + server is up and running!"
}
start_vm() {
echo "Starting VM..."
docker compose -f ../compose.yml start
while true; do
response=$(curl --write-out '%{http_code}' --silent --output /dev/null localhost:5000/probe)
if [ $response -eq 200 ]; then
break
fi
echo "Waiting for a response from the computer control server"
sleep 5
done
echo "VM started"
}
stop_vm() {
echo "Stopping VM..."
docker compose -f ../compose.yml stop
echo "VM stopped"
}
delete_vm() {
echo "Removing VM and associated containers..."
docker compose -f ../compose.yml down
echo "VM removed"
}
# Check if control parameter is provided
if [ -z "$1" ]; then
echo "Usage: $0 [create|start|stop|delete]"
exit 1
fi
# Execute the appropriate function based on the control parameter
case "$1" in
"create")
create_vm
;;
"start")
start_vm
;;
"stop")
stop_vm
;;
"delete")
delete_vm
;;
*)
echo "Invalid option: $1"
echo "Usage: $0 [create|start|stop|delete]"
exit 1
;;
esac
\ No newline at end of file
#!/usr/bin/env bash
set -Eeuo pipefail
: "${WIDTH:=""}"
: "${HEIGHT:=""}"
: "${VERIFY:=""}"
: "${REGION:=""}"
: "${MANUAL:=""}"
: "${REMOVE:=""}"
: "${VERSION:=""}"
: "${DETECTED:=""}"
: "${KEYBOARD:=""}"
: "${LANGUAGE:=""}"
: "${USERNAME:=""}"
: "${PASSWORD:=""}"
MIRRORS=4
PLATFORM="x64"
parseVersion() {
if [[ "${VERSION}" == \"*\" || "${VERSION}" == \'*\' ]]; then
VERSION="${VERSION:1:-1}"
fi
[ -z "$VERSION" ] && VERSION="win11"
case "${VERSION,,}" in
"11" | "11p" | "win11" | "pro11" | "win11p" | "windows11" | "windows 11" )
VERSION="win11x64"
;;
"11e" | "win11e" | "windows11e" | "windows 11e" | "win11x64-enterprise-eval" )
VERSION="win11x64-enterprise-eval"
;;
esac
return 0
}
getLanguage() {
local id="$1"
local ret="$2"
local lang=""
local desc=""
local culture=""
case "${id,,}" in
"ar" | "ar-"* )
lang="Arabic"
desc="$lang"
culture="ar-SA" ;;
"bg" | "bg-"* )
lang="Bulgarian"
desc="$lang"
culture="bg-BG" ;;
"cs" | "cs-"* | "cz" | "cz-"* )
lang="Czech"
desc="$lang"
culture="cs-CZ" ;;
"da" | "da-"* | "dk" | "dk-"* )
lang="Danish"
desc="$lang"
culture="da-DK" ;;
"de" | "de-"* )
lang="German"
desc="$lang"
culture="de-DE" ;;
"el" | "el-"* | "gr" | "gr-"* )
lang="Greek"
desc="$lang"
culture="el-GR" ;;
"gb" | "en-gb" )
lang="English International"
desc="English"
culture="en-GB" ;;
"en" | "en-"* )
lang="English"
desc="English"
culture="en-US" ;;
"mx" | "es-mx" )
lang="Spanish (Mexico)"
desc="Spanish"
culture="es-MX" ;;
"es" | "es-"* )
lang="Spanish"
desc="$lang"
culture="es-ES" ;;
"et" | "et-"* )
lang="Estonian"
desc="$lang"
culture="et-EE" ;;
"fi" | "fi-"* )
lang="Finnish"
desc="$lang"
culture="fi-FI" ;;
"ca" | "fr-ca" )
lang="French Canadian"
desc="French"
culture="fr-CA" ;;
"fr" | "fr-"* )
lang="French"
desc="$lang"
culture="fr-FR" ;;
"he" | "he-"* | "il" | "il-"* )
lang="Hebrew"
desc="$lang"
culture="he-IL" ;;
"hr" | "hr-"* | "cr" | "cr-"* )
lang="Croatian"
desc="$lang"
culture="hr-HR" ;;
"hu" | "hu-"* )
lang="Hungarian"
desc="$lang"
culture="hu-HU" ;;
"it" | "it-"* )
lang="Italian"
desc="$lang"
culture="it-IT" ;;
"ja" | "ja-"* | "jp" | "jp-"* )
lang="Japanese"
desc="$lang"
culture="ja-JP" ;;
"ko" | "ko-"* | "kr" | "kr-"* )
lang="Korean"
desc="$lang"
culture="ko-KR" ;;
"lt" | "lt-"* )
lang="Lithuanian"
desc="$lang"
culture="lv-LV" ;;
"lv" | "lv-"* )
lang="Latvian"
desc="$lang"
culture="lt-LT" ;;
"nb" | "nb-"* |"nn" | "nn-"* | "no" | "no-"* )
lang="Norwegian"
desc="$lang"
culture="nb-NO" ;;
"nl" | "nl-"* )
lang="Dutch"
desc="$lang"
culture="nl-NL" ;;
"pl" | "pl-"* )
lang="Polish"
desc="$lang"
culture="pl-PL" ;;
"br" | "pt-br" )
lang="Brazilian Portuguese"
desc="Portuguese"
culture="pt-BR" ;;
"pt" | "pt-"* )
lang="Portuguese"
desc="$lang"
culture="pt-BR" ;;
"ro" | "ro-"* )
lang="Romanian"
desc="$lang"
culture="ro-RO" ;;
"ru" | "ru-"* )
lang="Russian"
desc="$lang"
culture="ru-RU" ;;
"sk" | "sk-"* )
lang="Slovak"
desc="$lang"
culture="sk-SK" ;;
"sl" | "sl-"* | "si" | "si-"* )
lang="Slovenian"
desc="$lang"
culture="sl-SI" ;;
"sr" | "sr-"* )
lang="Serbian Latin"
desc="Serbian"
culture="sr-Latn-RS" ;;
"sv" | "sv-"* | "se" | "se-"* )
lang="Swedish"
desc="$lang"
culture="sv-SE" ;;
"th" | "th-"* )
lang="Thai"
desc="$lang"
culture="th-TH" ;;
"tr" | "tr-"* )
lang="Turkish"
desc="$lang"
culture="tr-TR" ;;
"ua" | "ua-"* | "uk" | "uk-"* )
lang="Ukrainian"
desc="$lang"
culture="uk-UA" ;;
"hk" | "zh-hk" | "cn-hk" )
lang="Chinese (Traditional)"
desc="Chinese HK"
culture="zh-TW" ;;
"tw" | "zh-tw" | "cn-tw" )
lang="Chinese (Traditional)"
desc="Chinese TW"
culture="zh-TW" ;;
"zh" | "zh-"* | "cn" | "cn-"* )
lang="Chinese (Simplified)"
desc="Chinese"
culture="zh-CN" ;;
esac
case "${ret,,}" in
"desc" ) echo "$desc" ;;
"name" ) echo "$lang" ;;
"culture" ) echo "$culture" ;;
*) echo "$desc";;
esac
return 0
}
parseLanguage() {
REGION="${REGION//_/-/}"
KEYBOARD="${KEYBOARD//_/-/}"
LANGUAGE="${LANGUAGE//_/-/}"
[ -z "$LANGUAGE" ] && LANGUAGE="en"
case "${LANGUAGE,,}" in
"arabic" | "arab" ) LANGUAGE="ar" ;;
"bulgarian" | "bu" ) LANGUAGE="bg" ;;
"chinese" | "cn" ) LANGUAGE="zh" ;;
"croatian" | "cr" | "hrvatski" ) LANGUAGE="hr" ;;
"czech" | "cz" | "cesky" ) LANGUAGE="cs" ;;
"danish" | "dk" | "danske" ) LANGUAGE="da" ;;
"dutch" | "nederlands" ) LANGUAGE="nl" ;;
"english" | "gb" | "british" ) LANGUAGE="en" ;;
"estonian" | "eesti" ) LANGUAGE="et" ;;
"finnish" | "suomi" ) LANGUAGE="fi" ;;
"french" | "français" | "francais" ) LANGUAGE="fr" ;;
"german" | "deutsch" ) LANGUAGE="de" ;;
"greek" | "gr" ) LANGUAGE="el" ;;
"hebrew" | "il" ) LANGUAGE="he" ;;
"hungarian" | "magyar" ) LANGUAGE="hu" ;;
"italian" | "italiano" ) LANGUAGE="it" ;;
"japanese" | "jp" ) LANGUAGE="ja" ;;
"korean" | "kr" ) LANGUAGE="ko" ;;
"latvian" | "latvijas" ) LANGUAGE="lv" ;;
"lithuanian" | "lietuvos" ) LANGUAGE="lt" ;;
"norwegian" | "no" | "nb" | "norsk" ) LANGUAGE="nn" ;;
"polish" | "polski" ) LANGUAGE="pl" ;;
"portuguese" | "pt" | "br" ) LANGUAGE="pt-br" ;;
"português" | "portugues" ) LANGUAGE="pt-br" ;;
"romanian" | "română" | "romana" ) LANGUAGE="ro" ;;
"russian" | "ruski" ) LANGUAGE="ru" ;;
"serbian" | "serbian latin" ) LANGUAGE="sr" ;;
"slovak" | "slovenský" | "slovensky" ) LANGUAGE="sk" ;;
"slovenian" | "si" | "slovenski" ) LANGUAGE="sl" ;;
"spanish" | "espanol" | "español" ) LANGUAGE="es" ;;
"swedish" | "se" | "svenska" ) LANGUAGE="sv" ;;
"turkish" | "türk" | "turk" ) LANGUAGE="tr" ;;
"thai" ) LANGUAGE="th" ;;
"ukrainian" | "ua" ) LANGUAGE="uk" ;;
esac
local culture
culture=$(getLanguage "$LANGUAGE" "culture")
[ -n "$culture" ] && return 0
error "Invalid LANGUAGE specified, value \"$LANGUAGE\" is not recognized!"
return 1
}
printVersion() {
local id="$1"
local desc="$2"
case "${id,,}" in
"win11"* ) desc="Windows 11" ;;
esac
if [ -z "$desc" ]; then
desc="Windows"
[[ "${PLATFORM,,}" != "x64" ]] && desc+=" for ${PLATFORM}"
fi
echo "$desc"
return 0
}
printEdition() {
local id="$1"
local desc="$2"
local result=""
local edition=""
result=$(printVersion "$id" "x")
[[ "$result" == "x" ]] && echo "$desc" && return 0
case "${id,,}" in
*"-enterprise" )
edition="Enterprise"
;;
*"-enterprise-eval" )
edition="Enterprise (Evaluation)"
;;
esac
[ -n "$edition" ] && result+=" $edition"
echo "$result"
return 0
}
fromName() {
local id=""
local name="$1"
local arch="$2"
local add=""
[[ "$arch" != "x64" ]] && add="$arch"
case "${name,,}" in
*"windows 11"* ) id="win11${arch}" ;;
esac
echo "$id"
return 0
}
getVersion() {
local id
local name="$1"
local arch="$2"
id=$(fromName "$name" "$arch")
case "${id,,}" in
"win11"* )
case "${name,,}" in
*" enterprise evaluation"* ) id="$id-enterprise-eval" ;;
*" enterprise"* ) id="$id-enterprise" ;;
esac
;;
esac
echo "$id"
return 0
}
addFolder() {
local src="$1"
local folder="/oem"
[ ! -d "$folder" ] && folder="/OEM"
[ ! -d "$folder" ] && folder="$STORAGE/oem"
[ ! -d "$folder" ] && folder="$STORAGE/OEM"
[ ! -d "$folder" ] && return 0
local msg="Adding OEM folder to image..."
info "$msg" && html "$msg"
local dest="$src/\$OEM\$/\$1/OEM"
mkdir -p "$dest" || return 1
cp -Lr "$folder/." "$dest" || return 1
local file
file=$(find "$dest" -maxdepth 1 -type f -iname install.bat | head -n 1)
[ -f "$file" ] && unix2dos -q "$file"
return 0
}
# migrateFiles() {
# local base="$1"
# local version="$2"
# local file=""
# [ -f "$base" ] && return 0
# [[ "${version,,}" == "tiny10" ]] && file="tiny10_x64_23h2.iso"
# [[ "${version,,}" == "tiny11" ]] && file="tiny11_2311_x64.iso"
# [[ "${version,,}" == "core11" ]] && file="tiny11_core_x64_beta_1.iso"
# [[ "${version,,}" == "winxpx86" ]] && file="en_windows_xp_professional_with_service_pack_3_x86_cd_x14-80428.iso"
# [[ "${version,,}" == "winvistax64" ]] && file="en_windows_vista_sp2_x64_dvd_342267.iso"
# [[ "${version,,}" == "win7x64" ]] && file="en_windows_7_enterprise_with_sp1_x64_dvd_u_677651.iso"
# [ ! -f "$STORAGE/$file" ] && return 0
# mv -f "$STORAGE/$file" "$base" || return 1
# return 0
# }
migrateFiles() {
local base="$1"
local version="$2"
local file=""
[ -f "$base" ] && return 0
[ ! -f "$STORAGE/$file" ] && return 0
mv -f "$STORAGE/$file" "$base" || return 1
return 0
}
return 0
#!/usr/bin/env bash
set -Eeuo pipefail
: "${BOOT_MODE:="windows"}"
APP="OmniParser Windows"
SUPPORT="https://github.com/microsoft/OmniParser"
cd /run
. reset.sh # Initialize system
. define.sh # Define versions
. install.sh # Run installation
. disk.sh # Initialize disks
. display.sh # Initialize graphics
. network.sh # Initialize network
. samba.sh # Configure samba
. boot.sh # Configure boot
. proc.sh # Initialize processor
. power.sh # Configure shutdown
. config.sh # Configure arguments
trap - ERR
version=$(qemu-system-x86_64 --version | head -n 1 | cut -d '(' -f 1 | awk '{ print $NF }')
info "Booting ${APP}${BOOT_DESC} using QEMU v$version..."
{ qemu-system-x86_64 ${ARGS:+ $ARGS} >"$QEMU_OUT" 2>"$QEMU_LOG"; rc=$?; } || :
(( rc != 0 )) && error "$(<"$QEMU_LOG")" && exit 15
terminal
( sleep 30; boot ) &
tail -fn +0 "$QEMU_LOG" 2>/dev/null &
cat "$QEMU_TERM" 2> /dev/null | tee "$QEMU_PTY" &
wait $! || :
sleep 1 & wait $!
[ ! -f "$QEMU_END" ] && finish 0
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment