finetune.py 8.51 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
import json
from dataclasses import dataclass, field
from typing import Dict, Optional

import torch
import transformers
from torch.utils.data import Dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    BitsAndBytesConfig,
)


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-2B-sft-bf16")


@dataclass
class DataArguments:
    train_data_path: str = field(
        default="data/AdvertiseGenChatML/train.json",
        metadata={"help": "Path to the training data."},
    )
    eval_data_path: str = field(
        default="data/AdvertiseGenChatML/dev.json",
        metadata={"help": "Path to the test data."},
    )


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    use_lora: bool = field(default=False)
    qlora: bool = field(default=False)


class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning.
    Loads the dataset from a json file and preprocesses it.example:
    /data/AdvertiseGenChatML/train.json
    """

    def __init__(
        self,
        data_path,
        tokenizer,
        model_max_length=4096,
    ):
        super(SupervisedDataset, self).__init__()
        self.data = json.load(open(data_path))
        self.tokenizer = tokenizer
        self.model_max_length = model_max_length
        self.ignore_index = -100
        item = self.preprocessing(self.data[0])
        print("input:", self.tokenizer.decode(item["input_ids"]))
        labels = []
        for id_ in item["label_ids"]:
            if id_ == -100:
                continue
            labels.append(id_)
        print("label:", self.tokenizer.decode(labels))

    def __len__(self):
        return len(self.data)

    def preprocessing(self, example):
        input_ids = [self.tokenizer.bos_token_id]
        label_ids = [self.ignore_index]

        for message in example["messages"]:
            role = message["role"]
            content = message["content"]

            content_ids = self.tokenizer.apply_chat_template([message])

            if role == "user":
                if self.tokenizer.eos_token_id == 73440:  # minicpm3.0 and minicpm4.0
                    input_ids += self.tokenizer.apply_chat_template(
                        [message], add_generation_prompt=True
                    )
                    label_ids += [self.ignore_index] * len(
                        self.tokenizer.apply_chat_template(
                            [message], add_generation_prompt=True
                        )
                    )
                else: # minicpm2.0
                    input_ids += content_ids
                    label_ids += [self.ignore_index] * len(content_ids)
            elif role == "system":
                input_ids += content_ids
                label_ids += [self.ignore_index] * len(content_ids)
            elif role == "assistant":
                if self.tokenizer.eos_token_id == 73440:  # minicpm3.0 and minicpm4.0
                    input_ids += tokenizer.encode(content, add_special_tokens=False)
                    label_ids += tokenizer.encode(content, add_special_tokens=False)
                else: # minicpm2.0
                    input_ids += content_ids
                    label_ids += content_ids

        input_ids.append(self.tokenizer.eos_token_id)
        label_ids.append(self.tokenizer.eos_token_id)
        # truncate to max len
        input_ids = input_ids[: self.model_max_length]
        label_ids = label_ids[: self.model_max_length]
        attention_mask = [1] * len(input_ids)
        # pad to max len
        input_ids += [self.tokenizer.eos_token_id] * (
            self.model_max_length - len(input_ids)
        )
        label_ids += [self.ignore_index] * (self.model_max_length - len(label_ids))
        attention_mask += [0] * (self.model_max_length - len(attention_mask))
        # convert to pt tensor
        input_ids = torch.LongTensor(input_ids)
        label_ids = torch.LongTensor(label_ids)
        attention_mask = torch.LongTensor(attention_mask)
        return {
            "input_ids": input_ids,
            "label_ids": label_ids,
            "attention_mask": attention_mask,
        }

    def __getitem__(self, idx) -> Dict[str, torch.Tensor]:
        return self.preprocessing(self.data[idx])


def load_model_and_tokenizer(
    model_path: str,
    max_length: int = 4096,
    use_lora: bool = True,
    qlora: bool = False,
    bf16: bool = False,
    fp16: bool = False,
):
    """load model and tokenizer"""
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    assert not (bf16 and fp16), "bf16 or fp16, not both"
    if bf16:
        dtype = torch.bfloat16
    elif fp16:
        dtype = torch.float16
    else:
        dtype = torch.float32
    if qlora:
        assert use_lora, "use_lora must be True when use_qlora is True"
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,  # 是否进行4bit量化
            load_in_8bit=False,  # 是否进行8bit量化
            bnb_4bit_compute_dtype=torch.float16,  # 计算精度设置
            bnb_4bit_quant_storage=torch.uint8,  # 量化权重的储存格式
            bnb_4bit_quant_type="nf4",  # 量化格式,这里用的是正太分布的int4
            bnb_4bit_use_double_quant=True,  # 是否采用双量化,即对zeropoint和scaling参数进行量化
            llm_int8_enable_fp32_cpu_offload=False,  # 是否llm使用int8,cpu上保存的参数使用fp32
            llm_int8_has_fp16_weight=False,  # 是否启用混合精度
            # llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"],  # 不进行量化的模块
            llm_int8_threshold=6.0,  # llm.int8()算法中的离群值,根据这个值区分是否进行量化
        )
        model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=dtype,
            trust_remote_code=True,
            quantization_config=quantization_config,
        )
    else:
        model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=dtype,
            trust_remote_code=True,
        )
    if use_lora:
        from peft import LoraConfig, TaskType, get_peft_model

        lora_config = LoraConfig(
            init_lora_weights="gaussian",
            task_type=TaskType.CAUSAL_LM,
            target_modules=(
                ["q_a_proj", "kv_a_proj_with_mqa", "q_b_proj", "kv_b_proj"]
                if model.config.architectures == ["MiniCPM3ForCausalLM"]
                else ["q_proj", "v_proj"]
            ),
            r=64,
            lora_alpha=32,
            lora_dropout=0.1,
            inference_mode=False,
        )
        model = get_peft_model(model, lora_config)
        # trainable params: 2,949,120 || all params: 3,010,652,928 || trainable%: 0.09795616002669305
        model.print_trainable_parameters()
        # model.enable_input_require_grads()  # need when using adapter

    return model, tokenizer


if __name__ == "__main__":
    model_path = "/mnt/data/user/tc_agi/yh/models/MiniCPM"
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model, tokenizer = load_model_and_tokenizer(
        model_path=model_args.model_name_or_path,
        max_length=training_args.model_max_length,
        use_lora=training_args.use_lora,
        qlora=training_args.qlora,
        bf16=training_args.bf16,
        fp16=training_args.fp16,
    )

    train_dataset = SupervisedDataset(
        data_path=data_args.train_data_path,
        tokenizer=tokenizer,
        model_max_length=training_args.model_max_length,
    )
    eval_dataset = SupervisedDataset(
        data_path=data_args.eval_data_path,
        tokenizer=tokenizer,
        model_max_length=training_args.model_max_length,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
    )

    trainer.train()
    # save the incremental PEFT weights, more details can be found in https://huggingface.co/blog/peft
    # model.save_pretrained("output_dir")