train_utils.py 8.5 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import sys
import torch
import signal
import socket
from torch.utils.data import ConcatDataset
from cotracker.datasets.utils import collate_fn, collate_fn_train
from torch.utils.tensorboard import SummaryWriter
from cotracker.datasets.dr_dataset import DynamicReplicaDataset
from cotracker.models.evaluation_predictor import EvaluationPredictor


# define the handler function
# for training on a slurm cluster
def sig_handler(signum, frame):
    print("caught signal", signum)
    print(socket.gethostname(), "USR1 signal caught.")
    # do other stuff to cleanup here
    print("requeuing job " + os.environ["SLURM_JOB_ID"])
    os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"])
    sys.exit(-1)


def term_handler(signum, frame):
    print("bypassing sigterm", flush=True)


def get_eval_dataloader(dataset_root, ds_name):
    from cotracker.datasets.tap_vid_datasets import TapVidDataset

    collate_fn_local = collate_fn
    if ds_name == "dynamic_replica":
        from cotracker.datasets.dr_dataset import DynamicReplicaDataset

        eval_dataset = DynamicReplicaDataset(
            root=os.path.join(dataset_root, "dynamic_replica"),
            sample_len=300,
            only_first_n_samples=1,
            rgbd_input=False,
        )
    elif ds_name == "tapvid_davis_first":
        data_root = os.path.join(dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl")
        eval_dataset = TapVidDataset(
            dataset_type="davis", data_root=data_root, queried_first=True
        )
    elif ds_name == "tapvid_davis_strided":
        data_root = os.path.join(dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl")
        eval_dataset = TapVidDataset(
            dataset_type="davis", data_root=data_root, queried_first=False
        )
    elif ds_name == "tapvid_kinetics_first":
        eval_dataset = TapVidDataset(
            dataset_type="kinetics",
            data_root=os.path.join(dataset_root, "tapvid", "tapvid_kinetics"),
        )
    elif ds_name == "tapvid_stacking":
        eval_dataset = TapVidDataset(
            dataset_type="stacking",
            data_root=os.path.join(
                dataset_root, "tapvid", "tapvid_rgb_stacking", "tapvid_rgb_stacking.pkl"
            ),
        )
    elif ds_name == "tapvid_robotap":
        eval_dataset = TapVidDataset(
            dataset_type="robotap",
            data_root=os.path.join(dataset_root, "tapvid", "tapvid_robotap"),
        )
    elif ds_name == "kubric":
        from cotracker.datasets.kubric_movif_dataset import KubricMovifDataset

        eval_dataset = KubricMovifDataset(
            data_root=os.path.join(
                args.dataset_root, "kubric/kubric_movi_f_120_frames_dense/movi_f"
            ),
            traj_per_sample=1024,
            use_augs=False,
            split="valid",
            sample_vis_1st_frame=True,
        )
        collate_fn_local = collate_fn_train
    eval_dataloader_dr = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=1,
        shuffle=False,
        num_workers=1,
        collate_fn=collate_fn_local,
    )
    return eval_dataloader_dr


def get_train_dataset(args):
    dataset = None
    if "kubric" in args.train_datasets:
        from cotracker.datasets import kubric_movif_dataset

        kubric = kubric_movif_dataset.KubricMovifDataset(
            data_root=os.path.join(
                args.dataset_root, "kubric/kubric_movi_f_120_frames_dense/movi_f"
            ),
            crop_size=args.crop_size,
            seq_len=args.sequence_len,
            traj_per_sample=args.traj_per_sample,
            sample_vis_last_frame=args.query_sampling_method is not None
            and ("random" in args.query_sampling_method),
            use_augs=not args.dont_use_augs,
            random_seq_len=args.random_seq_len,
            random_frame_rate=args.random_frame_rate,
            random_number_traj=args.random_number_traj,
        )

        if dataset is None:
            dataset = ConcatDataset(4 * [kubric])
        else:
            dataset = ConcatDataset(4 * [kubric] + [dataset])
        print("add kubric to train", len(dataset))

    if "dr" in args.train_datasets:
        dr = DynamicReplicaDataset(
            root=os.path.join(args.dataset_root, "dynamic_replica"),
            sample_len=args.sequence_len,
            split="train",
            traj_per_sample=args.traj_per_sample,
            crop_size=args.crop_size,
        )
        if dataset is None:
            dataset = dr
        else:
            dataset = ConcatDataset([dr] + [dataset])

    return dataset


def run_test_eval(evaluator, model, dataloaders, writer, step, query_random=False):
    model.eval()
    for ds_name, dataloader in dataloaders:
        visualize_every = 1
        grid_size = 5
        num_uniformly_sampled_pts = 0
        if ds_name == "dynamic_replica":
            visualize_every = 8
            grid_size = 0
        elif ds_name == "kubric":
            visualize_every = 5
            grid_size = 0
        elif "davis" in ds_name or "tapvid_stacking" in ds_name:
            visualize_every = 5
        elif "robotap" in ds_name:
            visualize_every = 20
        elif "kinetics" in ds_name:
            visualize_every = 50
        if query_random:
            grid_size = 0
            num_uniformly_sampled_pts = 100

        predictor = EvaluationPredictor(
            model.module.module,
            grid_size=grid_size,
            local_grid_size=0,
            single_point=False,
            num_uniformly_sampled_pts=num_uniformly_sampled_pts,
            n_iters=6,
        )

        if torch.cuda.is_available():
            predictor.model = predictor.model.cuda()

        metrics = evaluator.evaluate_sequence(
            model=predictor,
            test_dataloader=dataloader,
            dataset_name=ds_name,
            train_mode=True,
            writer=writer,
            step=step,
            visualize_every=visualize_every,
        )

        if ds_name == "dynamic_replica" or ds_name == "kubric":
            metrics = {
                f"{ds_name}_avg_{k}": v
                for k, v in metrics["avg"].items()
                if not ("1" in k or "2" in k or "4" in k or "8" in k)
            }

        if "tapvid" in ds_name:
            metrics = {
                f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"],
                f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"],
                f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"],
            }

        writer.add_scalars(f"Eval_{ds_name}", metrics, step)


class Logger:
    SUM_FREQ = 100

    def __init__(self, model, scheduler, ckpt_path):
        self.model = model
        self.scheduler = scheduler
        self.ckpt_path = ckpt_path
        self.total_steps = 0
        self.running_loss = {}
        self.writer = SummaryWriter(log_dir=os.path.join(ckpt_path, "runs"))

    def _print_training_status(self):
        metrics_data = [
            self.running_loss[k] / Logger.SUM_FREQ
            for k in sorted(self.running_loss.keys())
        ]
        training_str = "[{:6d}] ".format(self.total_steps + 1)
        metrics_str = ("{:10.4f}, " * len(metrics_data)).format(*metrics_data)

        # print the training status
        logging.info(
            f"Training Metrics ({self.total_steps}): {training_str + metrics_str}"
        )

        if self.writer is None:
            self.writer = SummaryWriter(log_dir=os.path.join(self.ckpt_path, "runs"))

        for k in self.running_loss:
            self.writer.add_scalar(
                k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps
            )
            self.running_loss[k] = 0.0

    def push(self, metrics, task):
        self.total_steps += 1

        for key in metrics:
            task_key = str(key) + "_" + task
            if task_key not in self.running_loss:
                self.running_loss[task_key] = 0.0

            self.running_loss[task_key] += metrics[key]

        if self.total_steps % Logger.SUM_FREQ == Logger.SUM_FREQ - 1:
            self._print_training_status()
            self.running_loss = {}

    def write_dict(self, results):
        if self.writer is None:
            self.writer = SummaryWriter(log_dir=os.path.join(self.ckpt_path, "runs"))

        for key in results:
            self.writer.add_scalar(key, results[key], self.total_steps)

    def close(self):
        self.writer.close()