visual_trace.py 6.47 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import io
import os
import cv2
import json
import torch
import numpy as np
from PIL import Image
from IPython import display
from tqdm import tqdm
from cotracker.utils.visualizer import Visualizer, read_video_from_path
from matplotlib import cm
import faiss
from kmeans_pytorch import kmeans

class visual_trace():
    def __init__(
            self,
            grid_size=10, 
            grid_query_frame=0, 
            linewidth=2,
            backward_tracking=False, 
            save_dir="./videos", 
        ):

        self.grid_size = grid_size
        self.grid_query_frame = grid_query_frame
        self.backward_tracking = backward_tracking
        self.visualizer = Visualizer(save_dir=save_dir, pad_value=0, linewidth=linewidth, tracks_leave_trace=-1)

    def extract_visual_trace(self, video):
        video = video.to(self.device)
        pred_tracks, pred_visibility = self.model(
            video,
            grid_size=self.grid_size,
            grid_query_frame=self.grid_query_frame,
            backward_tracking=self.backward_tracking,
            # segm_mask=segm_mask
        )
        return video, pred_tracks, pred_visibility

    def visual_trace_length(self, pred_tracks, pred_visibility, image_size):
        """
        Compute the length of the visual trace
        pred_tracks: e.g., [1, 77, 225, 2]
        pred_visibility: e.g., [1, 77, 225]
        image_size: e.g., [720, 1280]            
        """
        pred_tracks_normalized = pred_tracks / torch.tensor(image_size).float()[None, None, None, :].to(pred_tracks.device)
        pred_visiblity_float = pred_visibility[:, 1:].float().to(pred_tracks.device)
        consecutive_displacement = torch.norm(pred_tracks_normalized[:, 1:] - pred_tracks_normalized[:, :-1], dim=3)
        # average_displacement = (consecutive_displacement * pred_visiblity_float).sum(1) / (1e-5 + pred_visiblity_float.sum(1))
        average_displacement = consecutive_displacement.mean(1)
        return average_displacement


    def visualize(self, video, pred_tracks, pred_visibility, filename="visual_trace.mp4", mode="ranbow"):
        if mode == "rainbow":
            self.visualizer.color_map = cm.get_cmap("gist_rainbow")
        elif mode == "cool":
            self.visualizer.color_map = cm.get_cmap(mode)
        return self.visualizer.visualize(
            video,
            pred_tracks,
            pred_visibility,
            query_frame=0 if self.backward_tracking else self.grid_query_frame,
            filename=filename,
        )           

    @classmethod
    def cluster_traces(self, traces, n_clusters=3):
        try:
            traces_for_clustering = traces[0].transpose(0, 1)
            # pred_tracks_4_clustering = pred_tracks_4_clustering - pred_tracks_4_clustering[:, :1]
            traces_for_clustering = traces_for_clustering.flatten(1)
            kmeans = faiss.Kmeans(
                traces_for_clustering.shape[1], 
                min(n_clusters, traces_for_clustering.shape[0]), 
                niter=50, 
                verbose=False,
                min_points_per_centroid=1,
                max_points_per_centroid=10000000,
            )
            kmeans.train(traces_for_clustering.cpu().numpy())
            distances, cluster_ids_x_np = kmeans.index.search(traces_for_clustering.cpu().numpy(), 1)
            cluster_ids_x = torch.from_numpy(cluster_ids_x_np).to(traces_for_clustering.device)
        except:
            print("kmeans failed")
            return None
        # sample 20% of ids or at lest 1 and at most 2 ids from each cluster
        sampled_ids = cluster_ids_x.new_zeros(cluster_ids_x.size(0)).to(traces.device)
        for cluster_id in range(min(n_clusters, traces_for_clustering.shape[0])):
            cluster_idx = (cluster_ids_x == cluster_id).nonzero().squeeze(1)                                
            num_pts_to_sample = max(1, min(1, int(0.2*cluster_idx.size(0))))
            if num_pts_to_sample > 0:
                # TODO: random sample is a bit dummy, need a better sampling algo here
                sampled_idx = torch.randperm(cluster_idx.size(0))[:num_pts_to_sample]
                sampled_ids[cluster_idx[sampled_idx]] = 1
        return sampled_ids
    
    @classmethod
    def cluster_traces_kmeans(self, traces, n_clusters=3, positive=False):
        x = traces[0].transpose(0, 1).flatten(1)
        if x.shape[0] == 0:
            return None
        elif x.shape[0] == 1:
            return torch.ones(1).to(traces.device)
        cluster_ids_x, cluster_centers = kmeans(
            X=x, num_clusters=min(n_clusters, x.shape[0]), distance='euclidean', device=x.device, tqdm_flag=False
        )

        # sample 20% of ids or at lest 1 and at most 2 ids from each cluster
        sampled_ids = cluster_ids_x.new_zeros(cluster_ids_x.size(0)).to(traces.device)
        for cluster_id in range(min(n_clusters, cluster_ids_x.shape[0])):
            cluster_idx = (cluster_ids_x == cluster_id).nonzero().squeeze(1)                                
            num_pts_to_sample = max(1, min(1, int(0.2*cluster_idx.size(0))))
            if num_pts_to_sample > 0:
                # TODO: random sample is a bit dummy, need a better sampling algo here
                sampled_idx = torch.randperm(cluster_idx.size(0))[:num_pts_to_sample]
                sampled_ids[cluster_idx[sampled_idx]] = 1
        return sampled_ids        
    
    def remove_close_points_tensor(self, trajectory, min_distance=2):
        """
        Removes points from the 2D trajectory that are closer than min_distance apart.

        Parameters:
        trajectory (torch.Tensor): A tensor of shape (N, 2) representing N points in 2D space.
        min_distance (float): The minimum distance threshold for points to be retained.

        Returns:
        torch.Tensor: A filtered tensor of points where consecutive points are at least min_distance apart.
        """
        # Start with the first point
        filtered_trajectory = [trajectory[0]]

        # Iterate through the points
        for i in range(1, trajectory.size(0)):
            prev_point = filtered_trajectory[-1]
            curr_point = trajectory[i]

            # Calculate the Euclidean distance between the previous point and the current point
            distance = torch.norm(curr_point - prev_point)

            # Keep the point if it's at least min_distance apart from the previous one
            if distance >= min_distance:
                filtered_trajectory.append(curr_point)

        # Convert the filtered list back to a tensor
        return torch.stack(filtered_trajectory)