dataset.py 23.4 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
import copy
from dataclasses import dataclass, field
import json
import logging
import pathlib
from typing import Dict, Optional, Sequence, List
import pandas as pd
import torch
import deepspeed
import glob
import pandas as pd
import transformers
import tokenizers
import random
import re
import cv2
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import DataLoader, Dataset, DistributedSampler, IterableDataset
import torch.distributed as dist
import collections
from PIL import Image
from io import BytesIO
from data.utils.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from magma.image_processing_magma import MagmaImageProcessor
from magma.processing_magma import MagmaProcessor
from .data_item import DataItem
from . import *
from PIL import Image, ImageFile
from PIL import ImageDraw, ImageFont
from typing import List, Optional, Union

def preprocess_multimodal(
    sources: Sequence[str],
    data_args: None
) -> Dict:
    is_multimodal = data_args.is_multimodal
    if not is_multimodal:
        return sources

    for source in sources:
        for sentence in source:
            # move all DEFAULT_IMAGE_TOKEN to the beginning of the sentence
            if DEFAULT_IMAGE_TOKEN in sentence['value']:
                # count the number of DEFAULT_IMAGE_TOKEN in the sentence
                num_image_tokens = sentence['value'].count(DEFAULT_IMAGE_TOKEN)
                # remove all DEFAULT_IMAGE_TOKEN from the sentence
                if data_args.mm_use_image_start_end and (DEFAULT_IM_START_TOKEN + '<image>' + DEFAULT_IM_END_TOKEN) in sentence['value']:
                    sentence['value'] = sentence['value'].replace(DEFAULT_IM_START_TOKEN + '<image>' + DEFAULT_IM_END_TOKEN +'\n', '').replace(DEFAULT_IM_START_TOKEN + '<image>' + DEFAULT_IM_END_TOKEN, '')
                else:
                    sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN + '\n', '').replace(DEFAULT_IMAGE_TOKEN, '')
                # add num_image_tokens DEFAULT_IMAGE_TOKEN to the beginning of the sentence
                sentence['value'] = (DEFAULT_IMAGE_TOKEN + '\n') * num_image_tokens + sentence['value']
                if data_args.mm_use_image_start_end:
                    sentence['value'] = sentence['value'].replace('<image>', DEFAULT_IM_START_TOKEN + '<image>' + DEFAULT_IM_END_TOKEN)                     

    return sources

def preprocess(
    sources: Sequence[str],
    processor: MagmaProcessor, 
    has_image: bool = False):

    conversations = []
    for i, source in enumerate(sources):
        convs = copy.deepcopy(source)
        for elem in convs:
            elem['role'] = 'user' if elem['from'] in ['human', 'user'] else 'assistant'
            elem['content'] = elem['value']
        convs = [
            {
                "role": "system",
                "content": "You are agent that can see, talk and act.", 
            },            
        ] + convs
        
        text = processor.tokenizer.apply_chat_template(
            convs,
            tokenize=False,
            add_generation_prompt=False
        )
        conversations.append(text)

    # NOTE: this is only for QWen
    # get the sep1 and sep2
    dummy_convs = [        
        {
            "role": "system",
            "content": "You are agent that can see, talk and act.", 
        },
        {
            "role": "user",
            "content": ""
        },
        {
            "role": "assistant",
            "content": ""
        }
    ]
    dummy_text = processor.tokenizer.apply_chat_template(
        dummy_convs,
        tokenize=False,
        add_generation_prompt=False,
    )    

    empty_token_lengh = len(processor.tokenizer("").input_ids)

    bos_token = processor.tokenizer.bos_token
    eos_token = processor.tokenizer.eos_token
    if 'phi' in processor.tokenizer.name_or_path.lower():
        eos_token = '<|end|>\n'
    elif 'qwen2-' in processor.tokenizer.name_or_path.lower():
        bos_token = '<|im_start|>'
        eos_token = '<|im_end|>\n'

    segments = dummy_text.split(eos_token)[:-1]
    sep1, sep2 = segments[-2], segments[-1]
    if bos_token:
        sep1 = sep1.replace(bos_token, '')

    tokenizer = processor.tokenizer
    # Tokenize conversations
    input_ids = tokenizer(
        conversations,
        return_tensors="pt",
        padding="longest",
        max_length=tokenizer.model_max_length,
        truncation=True,
    ).input_ids

    targets = input_ids.clone()

    for k, (conversation, target) in enumerate(zip(conversations, targets)):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())
        if 'phi' in processor.tokenizer.name_or_path.lower():
            # Phi-3 has an pad_token at the end
            total_len = total_len + 1
        
        conversation_sys = conversation.split(sep1)[0]
        conversation = conversation[len(conversation_sys):]
        rounds = conversation.split(sep1)[1:]
        cur_len = len(tokenizer(conversation_sys).input_ids)
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep2)
            if len(parts) != 2:
                break
            parts[0] = sep1 + parts[0] + sep2
            rou = sep1 + rou
            
            # NOTE: the reason to minus 1 is because tokenizer will give a start token, e.g., 128000 for llama3
            round_len = len(tokenizer(rou).input_ids) - empty_token_lengh
            instruction_len = len(tokenizer(parts[0]).input_ids) - empty_token_lengh

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX
        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )
                print(
                    conversations[k]
                )
    return dict(
        input_ids=input_ids,
        labels=targets,
    )

class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, 
                processor: MagmaProcessor, 
                data_items: Dict,
                dataset_names: List[str],
                dataset_folders: List[str],
                data_args: None):
        super(LazySupervisedDataset, self).__init__()
        self.processor = processor
        self.data_args = data_args
        self.data_items = []
        self.conv_constructor = {}
        if dataset_names is not None:
            for dataset_name, dataset_folder in zip(dataset_names, dataset_folders):
                if dataset_name in ['sharegpt4v', 'aitw', 'mind2web']:
                    self.data_items.extend(data_items[dataset_name])
                elif dataset_name in ['seeclick', 'vision2ui', 'seeclick_ocr']:
                    self.conv_constructor[dataset_name] = eval(dataset_name)(
                        mm_use_trace_start_end=data_args.mm_use_trace_start_end,
                        mm_use_trace_speed=data_args.mm_use_trace_speed,
                        mm_use_image_start_end=data_args.mm_use_image_start_end,
                        mm_use_image_history=data_args.mm_use_image_history,
                        mm_use_som_tom=data_args.mm_use_som_tom,
                        mm_use_som_tom_orig_img=data_args.mm_use_som_tom_orig_img,
                        remove_static_trace_pts=data_args.remove_static_trace_pts,
                        spatial_quant_size=data_args.spatial_quant_size,                    
                        dataset_folder=dataset_folder, 
                        show_trace=data_args.show_trace,
                        task=data_args.task,
                        training_size=data_args.training_size,
                        tokenizer=processor.tokenizer,
                    )
                    final_items = self.conv_constructor[dataset_name].filter_items(data_items[dataset_name])
                    self.data_items.extend(final_items)                    
                else:
                    self.conv_constructor[dataset_name] = eval(dataset_name)(
                        mm_use_trace_start_end=data_args.mm_use_trace_start_end,
                        mm_use_trace_speed=data_args.mm_use_trace_speed,
                        mm_use_image_start_end=data_args.mm_use_image_start_end,
                        mm_use_image_history=data_args.mm_use_image_history,
                        mm_use_som_tom=data_args.mm_use_som_tom,
                        mm_use_som_tom_orig_img=data_args.mm_use_som_tom_orig_img,
                        remove_static_trace_pts=data_args.remove_static_trace_pts,
                        spatial_quant_size=data_args.spatial_quant_size,                    
                        dataset_folder=dataset_folder, 
                        show_trace=data_args.show_trace,    
                        task=data_args.task,
                        training_size=data_args.training_size,
                        tokenizer=processor.tokenizer,
                    )
                    final_items = self.conv_constructor[dataset_name].filter_items(data_items[dataset_name])
                    self.data_items.extend(final_items)
        self.action_placeholder_token_id = self.processor.tokenizer.convert_tokens_to_ids('<action>')

    def __len__(self):
        return len(self.data_items)

    @property
    def lengths(self):
        length_list = []
        for sample in self.data_items:
            img_tokens = 128 if ('image' in sample and sample['image'] is not None) else 0
            length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
        return length_list

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.data_items:
            cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
            cur_len = cur_len if ('image' in sample and sample['image'] is not None) else -cur_len
            length_list.append(cur_len)
        return length_list

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        item = copy.deepcopy(self.data_items[i])
        if 'video' in item and item['video'][0] is not None:
            assert item['image_folder'] is not None or self.data_args.image_folder is not None, "image_folder is not provided"
            image_folder = self.data_args.image_folder if self.data_args.image_folder is not None else item['image_folder']
            if item['dataset_tag'] in ['sthv2', 'ego4d', 'exoego4d']:
                visual_trace_path = os.path.join(image_folder, item['trace'])
                if os.path.exists(visual_trace_path):
                    try:
                        visual_traces = torch.load(visual_trace_path, map_location='cpu')
                        video_path = os.path.join(image_folder, item['video'].replace('/home/tanreuben/vlp_datasets/', ''))
                        item.update(visual_traces)
                    except Exception as e:
                        print(f"Error loading: {visual_trace_path}")
                        visual_traces = None
                        video_path = None
                else:                
                    print(f"Error: {visual_trace_path} not found")    
                    visual_traces = None       
                    video_path = None
                item = self.conv_constructor[item['dataset_tag']](item=item, video_path=video_path, visual_traces=visual_traces)                                              
            else:
                item['video'][0] = item['video'][0].replace('/mnt/data/video_datasets_visual_traces/YouCook2/', '')
                video_path = os.path.join(image_folder, item['video'][0])
                frame_start, frame_end = item['frame_interval'][0].item(), item['frame_interval'][1].item()
                video_name = os.path.basename(video_path).split('.')[0]
                if 'youcook2' in video_path.lower():
                    visual_trace_path = os.path.join(image_folder, 'all_detected_visual_traces_30fps', f'{video_name}_trace_{frame_start:09d}_{frame_end:09d}.pth')
                else:
                    visual_trace_path = os.path.join(image_folder, 'visual_trace' if 'epic' in image_folder else 'visual_traces', video_name, f'trace_{frame_start:09d}_{frame_end:09d}.pth')
                if os.path.exists(visual_trace_path):
                    visual_traces = torch.load(visual_trace_path, map_location='cpu')
                else:
                    visual_traces = None
                item = self.conv_constructor[item['dataset_tag']](item=item, video_path=video_path, visual_traces=visual_traces)    
            image = item['image']
            num_crops = item['num_crops']
            # if image is not a PIL image
            if image is None:  
                base_img_size = self.processor.image_processor.base_img_size
                image = Image.new('RGB', (base_img_size, base_img_size), (0, 0, 0))
                item['image'] = image
                num_crops = 1
            image_pt = self.processor.image_processor(image, num_crops=num_crops, return_tensors='pt')
            images = collections.defaultdict(list)
            for key, val in image_pt.items():
                images[key].append(val)
            texts = [item["conversations"]]
        elif 'image' in item and item['image'] is not None:
            import pdb; pdb.set_trace()
            # cope with multiple images
            image_folder = item['image_folder']
            image_files = item['image']
            if isinstance(image_files, str):
                image_files = [image_files]
            image_files = [image_path.replace("ming2web_images", "mind2web_images") for image_path in image_files]
            # image_files = image_files*2       
            # item["conversations"][0]['value'] = item["conversations"][0]['value'] + '\n' + DEFAULT_IMAGE_TOKEN
            images = collections.defaultdict(list)
            for image_file in image_files:
                image_file = image_file[1:] if image_file.startswith('/') else image_file
                image_path = os.path.join(image_folder, image_file)
                try:
                    if "trace" in self.data_items[i]:
                        trace_file = self.data_items[i]["trace"]
                        trace_path = os.path.join(image_folder, trace_file)
                        if os.path.exists(trace_path):
                            visual_traces = torch.load(trace_path, map_location='cpu')
                            item.update(visual_traces)
                        else:
                            visual_traces = None
                        video_path = image_path
                        item = self.conv_constructor[item['dataset_tag']](item=item, video_path=image_path, visual_traces=visual_traces)               
                        image = item['image_data']
                        num_crops = item['num_crops']
                        if image is None:  
                            base_img_size = self.processor.image_processor.base_img_size
                            image = Image.new('RGB', (base_img_size, base_img_size), (0, 0, 0))
                            num_crops = 1
                        # NOTE: override num_crops for robotics dataset
                        image = self.processor.image_processor(image, num_crops=num_crops, return_tensors='pt')
                    elif 'ocrs' in self.data_items[i]:
                        item = self.conv_constructor[item['dataset_tag']](item=item)        
                        image = self.processor.image_processor(image, return_tensors='pt')
                    else:
                        # regular image sft dataset
                        image = Image.open(image_path).convert('RGB')           
                        # if item['dataset_tag'] in ['seeclick', 'vision2ui']:
                        #     image = self.processor.image_processor(image, num_crops=9, return_tensors='pt')
                        # else:                   
                        image = self.processor.image_processor(image, return_tensors='pt')
                    for key, val in image.items():
                        images[key].append(val)
                except Exception as e:
                    print(f"Error: {e}")
                    base_img_size = self.processor.image_processor.base_img_size
                    image = Image.new('RGB', (base_img_size, base_img_size), (0, 0, 0))                    
                    image = self.processor.image_processor(image, num_crops=1, return_tensors='pt')
                    for key, val in image.items():
                        images[key].append(val)
            texts = preprocess_multimodal(
                copy.deepcopy([item["conversations"]]),
                self.data_args)
        else:
            images = collections.defaultdict(list)
            # image does not exist in the data, but the model is multimodal
            base_img_size = self.processor.image_processor.base_img_size
            image = Image.new('RGB', (base_img_size, base_img_size), (0, 0, 0))
            image = self.processor.image_processor(image, num_crops=1, return_tensors='pt')
            for key, val in image.items():
                images[key].append(val)
            item["conversations"][0]['value'] = DEFAULT_IMAGE_TOKEN + '\n' + item["conversations"][0]['value']
            if self.data_args.mm_use_image_start_end:
                item["conversations"][0]['value'] = item["conversations"][0]['value'].replace('<image>', DEFAULT_IM_START_TOKEN + '<image>' + DEFAULT_IM_END_TOKEN)
            texts = [item["conversations"]]
        
        data_dict = preprocess(
            texts,
            self.processor,
            has_image=('image' in item and item['image'] is not None)
        )

        if self.action_placeholder_token_id in data_dict['input_ids']:
            assert (data_dict['input_ids'] == self.action_placeholder_token_id).sum() == 7, "action token length should be 7 in input_ids"
            assert self.action_placeholder_token_id in data_dict['labels'], "action token should be also in labels"
            assert (data_dict['labels'] == self.action_placeholder_token_id).sum() == 7, "action token length should be 7 in labels"
            # replace the action token with the actual action token item['action_token_ids']
            action_token_ids = torch.tensor(item['action_token_ids'], dtype=torch.long)[None,:]
            data_dict['input_ids'][data_dict['input_ids'] == self.action_placeholder_token_id] = action_token_ids     
            data_dict['labels'][data_dict['labels'] == self.action_placeholder_token_id] = action_token_ids                   
        
        if isinstance(i, int):
            data_dict = dict(input_ids=data_dict["input_ids"][0],
                             labels=data_dict["labels"][0])
        data_dict.update(images)
        data_dict.update(
            {
                "dataset_name": item["dataset_tag"],
                "item_id": i
            }
        )
        del item
        return data_dict


# Custom wrapper to combine Dataset and IterableDataset without loading IterableDataset in memory
class CombinedDataset(Dataset):
    def __init__(self, dataset, iterable_dataset, local_run=False, seed=7):
        self.dataset_len = []
        if dataset is not None:
            self.dataset_len.append(len(dataset)) # Length of the Dataset   
            if dist.is_initialized():
                sampler = DistributedSampler(
                    dataset, 
                    num_replicas=dist.get_world_size(),
                    rank=dist.get_rank(),
                    shuffle=True,
                    seed=seed,
                    drop_last=False,
                )
            else:
                sampler = None            
            self.iterable_dataset_a = DataLoader(dataset, batch_size=1, sampler=sampler, num_workers=0 if local_run else 8, pin_memory=False)  # DataLoader for the Dataset
            self.iterable_iter_a = iter(self.iterable_dataset_a)
        else:
            self.iterable_dataset_a = None
            self.iterable_iter_a = None
            self.dataset_len.append(0)

        if iterable_dataset is not None:  
            self.dataset_len.append(len(iterable_dataset)) # Length of the IterableDataset   
            self.iterable_dataset_b = iterable_dataset
            self.iterable_iter_b = iter(self.iterable_dataset_b)  # Iterator for the IterableDataset
        else:
            self.iterable_dataset_b = None
            self.iterable_iter_b = None
            self.dataset_len.append(0)        
        self.sampling_ratios = [float(item)/sum(self.dataset_len) for item in self.dataset_len]
        print(f"total training data size: {sum(self.dataset_len)}")
        print(f"sampling ratios: {self.sampling_ratios}")

    def __len__(self):
        # Length can be the maximum of both or some other logic
        return sum(self.dataset_len)
    
    def __getitem__(self, index):
        # according to the sampling ratio, choose which dataset to sample
        dataset_choice = random.choices([0, 1], self.sampling_ratios)[0]
        if dataset_choice == 0:
            # Fetch a sample from the IterableDataset using its iterator
            try:
                iterable_sample_a = next(self.iterable_iter_a)
            except StopIteration:
                # Reinitialize the iterator if it exhausts
                self.iterable_iter_a = iter(self.iterable_dataset_a)
                iterable_sample_a = next(self.iterable_iter_a)
            iterable_sample_a['input_ids'] = iterable_sample_a['input_ids'][0]
            iterable_sample_a['labels'] = iterable_sample_a['labels'][0]
            iterable_sample_a['pixel_values'] = [item[0] for item in  iterable_sample_a['pixel_values']]
            iterable_sample_a['image_sizes'] = [item[0] for item in  iterable_sample_a['image_sizes']]
            return iterable_sample_a
        else:
            # Fetch a sample from the IterableDataset using its iterator
            try:
                iterable_sample_b = next(self.iterable_iter_b)
            except StopIteration:
                # Reinitialize the iterator if it exhausts
                self.iterable_iter_b = iter(self.iterable_dataset_b)
                iterable_sample_b = next(self.iterable_iter_b)
            # print(f"oxe-rank-{rank}: {iterable_sample_b['dataset_name']}")
            # Return a combined sample (modify based on your requirement)
            return iterable_sample_b

def build_joint_dataset(
        data_path: str,
        processor: MagmaProcessor,
        data_args: None, 
        is_eval: bool = False
    ) -> torch.utils.data.ConcatDataset:

    data_items, dataset_names, dataset_folders = DataItem(training_size=data_args.training_size, local_run=data_args.local_run)(data_path, processor, None, is_eval=is_eval)
    # pop out open-x dataset
    openx_dataset = None
    if 'openx' in data_items:
        openx_dataset = data_items.pop('openx')
        _ = dataset_folders.pop(dataset_names.index('openx'))
        _ = dataset_names.pop(dataset_names.index('openx'))

        lazy_dataset = None
        if len(data_items) > 0:
            lazy_dataset = LazySupervisedDataset(processor, data_items, dataset_names, dataset_folders, data_args)

        # concatenate openx dataset and lazy_dataset
        return CombinedDataset(lazy_dataset, openx_dataset, local_run=data_args.local_run)
    else:
        return LazySupervisedDataset(processor, data_items, dataset_names, dataset_folders, data_args)