conversations.py 33 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import torch
import torchvision
import re
import cv2
import numpy as np
import os
import yaml
from PIL import Image
from data.utils.visual_trace import visual_trace
from data.utils.som_tom import som_prompting, tom_prompting
import torchvision.io as tv_io
import torchvision
import time
import random
from decord import VideoReader, cpu

class Constructor():
    def __init__(self, **kwargs):
        self.trace = visual_trace(linewidth=4)
        self.mm_use_trace_start_end = kwargs.get('mm_use_trace_start_end', False)
        self.mm_use_trace_speed = kwargs.get('mm_use_trace_speed', False)
        self.mm_use_image_start_end = kwargs.get('mm_use_image_start_end', False)
        self.mm_use_image_history = kwargs.get('mm_use_image_history', False)
        self.remove_static_trace_pts = kwargs.get('remove_static_trace_pts', False)
        self.show_trace = kwargs.get('show_trace', False)
        self.video_reader = kwargs.get('video_reader', 'decord')
        if self.mm_use_image_start_end:
            self.image_placeholder = '<image_start><image><image_end>\n'
        else:
            self.image_placeholder = '<image>\n'

    def _get_frame(self, video_path, frame_start, frame_pos, size):   
        if video_path.endswith('.jpg') or video_path.endswith('.png'):
            image = Image.open(video_path).resize(size)
            return image
        if self.video_reader == 'cv2':
            video_cap = cv2.VideoCapture(video_path)
            num_frames = video_cap.get(cv2.CAP_PROP_FRAME_COUNT)
            if frame_start + frame_pos >= num_frames or frame_start + frame_pos < 0:
                frame_pos = 0
            trials = 0
            video_cap.set(cv2.CAP_PROP_POS_FRAMES, frame_start + frame_pos)
            while trials < 5:
                success, image = video_cap.read()
                if success:
                    break
                else:
                    time.sleep(0.1)
                    trials += 1
            if not success:
                print(f"Failed to read video {video_path} at frame {frame_start + frame_pos}")
                image = None      
            else:
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                image = Image.fromarray(image).resize(size)  
            video_cap.release()
            return image 
        elif self.video_reader == 'decord':
            try:
                vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
                num_frames = len(vr)
                if frame_start+frame_pos >= num_frames:
                    frame_pos = 0            
                frame_idx = [frame_start+frame_pos]
                image = vr.get_batch(frame_idx).asnumpy()[0]
                # https://github.com/dmlc/decord/issues/208
                vr.seek(0)
                # convert image to rgb format                
                image = Image.fromarray(image).resize(size)                                               
                return image     
            except Exception as e:
                print(f"Failed to read video {video_path} at frame {frame_start + frame_pos}")
                return None    
    
    def _process_gpt_response(self, gpt_response, task_description):
        """
        Process the gpt_response
        """
        gpt_response = gpt_response.replace('What you see', 'What I see')
        gpt_response = gpt_response.replace('you see ', '').replace('You see ', '')
        gpt_response = gpt_response.replace('you', 'the person')
        gpt_response = gpt_response.replace('your', '')
        gpt_response = gpt_response.replace('In the first image, ', '')
        # gpt_response = gpt_response.replace('What the person should do next', 'What you should do next')
        # gpt_response = gpt_response.replace('What you should do next', 'What you are doing')
        gpt_response = gpt_response.replace('personr', 'person\'s')
        # remove all str (marks) from the gpt_response
        gpt_response = re.sub(r' \([^)]*\)', '', gpt_response)
        gpt_response = gpt_response if len(gpt_response) > 0 else task_description
        gpt_response = gpt_response.replace('camera wearer', 'person')
        return gpt_response

    def _construct_conv_semantic(self, item, gpt_response, num_image_tokens=1):
        """
        Construct conversations for semantic (language) prediction
        """
        image_placeholder = ''.join([self.image_placeholder]*num_image_tokens)
        # model task 1: ask model to briefly describe the current image - understand the present
        if item['dataset_tag'] in ['ego4d', 'sthv2']:
            conv_user = (
                f'{image_placeholder}\nWhat is the person doing in the image?\n'
            )                 
            conv_gpt = gpt_response + '\n'
            
            gpt_response_todo = gpt_response

        elif item['dataset_tag'] == 'human_instruction':
            # for human instruction, it is narration
            conv_user = (
                f'{image_placeholder}\nThe person is doing some task in the image. Guess what is the person saying?\n'
            )                 
            conv_gpt = gpt_response + '\n'

            gpt_response_todo = gpt_response

        elif item['dataset_tag'] in ['epic']:
            gpt_response_see = gpt_response.split('What the person should do next')[0].replace('#','').replace('*','').replace('What I see:', '').strip()
            conv_user = (
                f'{image_placeholder}\nWhat do you see in the image?\n'
            )
            conv_gpt = gpt_response_see + '\n'
            gpt_response_todo = gpt_response.split('What the person should do next')[1].replace('#','').replace('*', '').replace(':','').strip()
        elif item['dataset_tag'] in ['openx_magma']:
            conv_user = (
                f'{image_placeholder}\nWhat is the robot doing in the image?\n'
            )                 
            conv_gpt = gpt_response + '\n'
            
            gpt_response_todo = gpt_response

        return conv_user, conv_gpt, gpt_response_todo

    
    def _construct_conv_som(self, item, image, visual_traces, frame_pos, pos_traces_to_mark=None, neg_traces_to_mark=None, normalize=True):
        """
        Construct conversations for spatial prediction
        """

        if pos_traces_to_mark is None or neg_traces_to_mark is None:
            pred_tracks = visual_traces['pred_tracks']
            pred_visibility = visual_traces['pred_visibility']
            # randomly sample pos_tracks and neg_tracks
            num_clusters_pos = torch.randint(2, 6, (1,)).item()
            num_clusters_neg = torch.randint(6, 15, (1,)).item()
            pos_tracks = pred_tracks[:,frame_pos:,torch.randint(0, pred_tracks.size(2), (num_clusters_pos,))]
            neg_tracks = pred_tracks[:,frame_pos:,torch.randint(0, pred_tracks.size(2), (num_clusters_neg,))]
            
            image, pos_traces_to_mark, neg_traces_to_mark, pos_mark_ids, neg_mark_ids, all_idx = \
                som_prompting(image, pos_tracks, neg_tracks, draw_som_positive=True, draw_som_negative=True)

        conv_user = (
            f"{self.image_placeholder}\nThe image is split into {self.spatial_quant_size}x{self.spatial_quant_size} grids, and labeled with numeric marks.\n"
            f"Please locate all the numerical marks in the image.\n"
        )

        # combine pos_traces_to_mark and neg_traces_to_mark
        pos_traces_to_mark.update(neg_traces_to_mark)
        # sort pos_traces_to_mark by the key
        pos_traces_to_mark = dict(sorted(pos_traces_to_mark.items()))

        marks_pos = []
        for key, val in pos_traces_to_mark.items():
            trace = val[0]
            if normalize:
                x = int(self.spatial_quant_size * trace[0, 0] / image.size[0])
                y = int(self.spatial_quant_size * trace[0, 1] / image.size[1])
            else:
                x = int(trace[0, 0])
                y = int(trace[0, 1])
            val_str = f"[{x},{y}]"
            marks_pos.append(f'Mark {key} at {val_str}')
        
        conv_gpt = ". ".join(marks_pos) + '\n'
        return conv_user, conv_gpt, image

    def _construct_conv_tom(self, item, video_path, visual_traces):
        """
        Construct conversations for spatial-temporal prediction
        """

    def _construct_conv(self, item, video_path, visual_traces):        

        # NOTE: for pretraining on video, we always set num_crops to 1 to save memory cost
        item['num_crops'] = 1
        
        if video_path is None and visual_traces is None:
            dummy_conversations = []
            dummy_conversations.append({'from': 'human', 'value': f"{self.image_placeholder}\nWhat is in this image?"})
            dummy_conversations.append({'from': 'gpt', 'value': "This is a blank image."})            
            item['conversations'] = dummy_conversations
            item['image'] = None  
            return item

        if 'image_size' not in item:
            assert '(height,width)' in item, f"image_size not in item and (height,width) not in item"
            item['image_size'] = item['(height,width)'][::-1]            
        
        if isinstance(item['image_size'][0], torch.Tensor):
            width, height = item['image_size'][0].item(), item['image_size'][1].item()
            frame_start, frame_end = item['frame_interval'][0].item(), item['frame_interval'][1].item()
            task_description = item['global_instructions'][0]
            gpt_response = item['gpt_response'][0]
        else:
            width, height = item['image_size']
            frame_start, frame_end = item['frame_interval']     
            task_description = item['global_instructions']
            gpt_response = item['gpt_response']
        
        gpt_response = self._process_gpt_response(gpt_response, task_description)

        if self.mm_use_image_history:
            # randomly sample at most 3 unique indices in range [0, frame_start)
            frame_idx = torch.randperm(frame_start)[:3].sort().values.tolist() + [frame_start]
        else:
            frame_idx = [frame_start]
        
        item['image'] = self._get_frames_with_idx(video_path, frame_idx, (width, height))
        if item['image'] is None:
            dummy_conversations = []
            dummy_conversations.append({'from': 'human', 'value': f"{self.image_placeholder}\nWhat is in this image?"})
            dummy_conversations.append({'from': 'gpt', 'value': "This is a blank image."})            
            item['conversations'] = dummy_conversations
            return item
                    
        conv_user, conv_gpt, gpt_response_todo = self._construct_conv_semantic(item, gpt_response, len(item['image']))        
        item['conversations'] = [
            {'from': 'human', 'value': conv_user}, 
            {'from': 'gpt', 'value': conv_gpt}            
        ]

        if not self.use_som_tom or random.random() < 0.2:
            return item
        
        if visual_traces is None:
            return item
        
        if len(visual_traces['pred_tracks'].shape) == 3:
            visual_traces['pred_tracks'] = visual_traces['pred_tracks'][None]
        if len(visual_traces['pred_visibility'].shape) == 2:
            visual_traces['pred_visibility'] = visual_traces['pred_visibility'][None]
 
        # model task 2: ask model the predict the movements of the person and/or the object - visual action for the future
        # sort pos_traces_to_mark by the key
        # calculate the trace length for each step
        track_length = torch.norm(visual_traces['pred_tracks'][:, 1:] - visual_traces['pred_tracks'][:, :-1], dim=3).mean(2)
        # accum_sum track_length
        accum_sum = torch.cumsum(track_length, dim=1) / (1e-5 + track_length.sum(1)[:, None])
        
        # find last position
        frame_rightmost = min(max(1, (accum_sum[0] < self.settings['trace_planner']['step_rightmost_ratio']).int().sum().item()), visual_traces['pred_tracks'].shape[1]-1)
        # random select a frame position but not the last frame
        frame_pos = torch.randint(0, frame_rightmost, (1,)).item()
        
        pred_tracks = visual_traces['pred_tracks'][:, frame_pos:]
        pred_visibility = visual_traces['pred_visibility'][:, frame_pos:]
        step_to_predict = pred_tracks.size(1)

        if step_to_predict == 0:            
            return item
        
        pred_tracks_history = visual_traces['pred_tracks'][:, :max(1, frame_pos+1)]
        pred_visibility_history = visual_traces['pred_visibility'][:, :max(1, frame_pos+1)]

        # only keep points that are visible at at least half steps
        valid_idx = pred_visibility[0].sum(0) > 0.5*pred_tracks.shape[1]

        if valid_idx.sum() <= 1:
            image = self._get_frame(video_path, frame_start, 0, (width, height))            
            conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, 0)
            item['conversations'].append({'from': 'human', 'value': conv_user})
            item['conversations'].append({'from': 'gpt', 'value': conv_gpt})
            item['image'].append(image)
            return item

        pred_tracks = pred_tracks[:, :, valid_idx]
        pred_visibility = pred_visibility[:, :, valid_idx]
        pred_tracks_history = pred_tracks_history[:, :, valid_idx]
        pred_visibility_history = pred_visibility_history[:, :, valid_idx]

        if self.show_trace:
            image = self._get_frame(video_path, frame_start, frame_pos, (width, height))
            for k in range(0,pred_tracks.shape[1],5):
                image_k = self._get_frame(video_path, frame_start, frame_pos+k, (width, height))
                if image_k is not None:
                    # mkdir
                    if not os.path.exists(f"./release/videos/trace_{item['video'][0].replace('/', '_').replace('.MP4', '')}"):
                        os.makedirs(f"./release/videos/trace_{item['video'][0].replace('/', '_').replace('.MP4', '')}")
                    image_k.save(f"./release/videos/trace_{item['video'][0].replace('/', '_').replace('.MP4', '')}/frame_{k}.jpg")
            images = [image] * pred_tracks.shape[1]
            video = torch.stack([torchvision.transforms.ToTensor()(img) for img in images])[None].float()*255    
            self.trace.visualizer.save_dir = "./release/videos"
            _ = self.trace.visualize(video, pred_tracks, pred_visibility, filename=f"trace_{item['video'][0].replace('/', '_').replace('.MP4', '')}", mode="rainbow")

        # calculate the trajectory lenght for pred_tracks
        pred_tracks_length = self.trace.visual_trace_length(pred_tracks, pred_visibility, (1, 1)).squeeze(0)
        # if 80% of the pred_tracks_length is larger than 2, then there is camera motion
        camera_motion = (pred_tracks_length > 1).sum() > 0.8*pred_tracks_length.size(0)
        camera_motion = True if item['dataset_tag'] in ['ego4d', 'epic', 'exoego4d'] else camera_motion
        
        start_pos = pred_tracks[:, 0][0]
        reference_pts_np = start_pos.cpu().numpy().reshape(-1, 2)

        if camera_motion:
            # remove camera motion using homography transformation
            try:
                future_pts_transformed = []
                for k in range(1, pred_tracks.shape[1]):
                    future_pts = pred_tracks[:, k][0]
                    future_pts_np = future_pts.cpu().numpy().reshape(-1, 2)
                    try:
                        (H, status) = cv2.findHomography(future_pts_np, reference_pts_np, cv2.RANSAC, 4.0)
                    except Exception as e:
                        continue
                    future_pts_np_transformed = cv2.perspectiveTransform(future_pts_np.reshape(1, -1, 2), H).reshape(-1, 2)                                
                    future_pts_transformed_k = torch.tensor(future_pts_np_transformed, dtype=torch.float32)
                    future_pts_transformed.append(future_pts_transformed_k)            
                pred_tracks = torch.stack([start_pos] + future_pts_transformed, dim=0).unsqueeze(0)           
            except Exception as e:
                pass
            
            if pred_tracks_history.size(1) > 0:
                try:
                    history_pts_transformed = []
                    for k in range(0, pred_tracks_history.shape[1]):
                        history_pts = pred_tracks_history[:, k][0]
                        history_pts_np = history_pts.cpu().numpy().reshape(-1, 2)
                        try:
                            (H, status) = cv2.findHomography(history_pts_np, reference_pts_np, cv2.RANSAC, 4.0)
                        except Exception as e:
                            continue
                        history_pts_np_transformed = cv2.perspectiveTransform(history_pts_np.reshape(1, -1, 2), H).reshape(-1, 2)                                
                        history_pts_transformed_k = torch.tensor(history_pts_np_transformed, dtype=torch.float32)
                        history_pts_transformed.append(history_pts_transformed_k)            
                    pred_tracks_history = torch.stack(history_pts_transformed, dim=0).unsqueeze(0)   
                except Exception as e:
                    pass
        
        # step 2: find positive traces and negative traces
        track_length = self.trace.visual_trace_length(pred_tracks, pred_visibility, (1, 1)).squeeze(0)
        threshold = 3 # max(track_length.max(), 2) * self.settings['trace_processor']['postive_factor_threshold']
        # video is almost static
        if (track_length > threshold).sum() <= 1:
            image = self._get_frame(video_path, frame_start, 0, (width, height))            
            conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, 0)
            item['conversations'].append({'from': 'human', 'value': conv_user})
            item['conversations'].append({'from': 'gpt', 'value': conv_gpt})                  
            item['image'].append(image)
            return item
        else:
            # find the positive traces and negative traces
            pos_tracks = pred_tracks[:, :, track_length > threshold]
            pos_visibility = pred_visibility[:, :, track_length > threshold]
            pos_tracks_history = pred_tracks_history[:, :, track_length > threshold]
            pos_visibility_history = pred_visibility_history[:, :, track_length > threshold]

            neg_tracks = pred_tracks[:, :, track_length <= threshold]
            neg_tracks_history = pred_tracks_history[:, :, track_length <= threshold]

            # clustering for positive traces
            
            # randome sample a number between 2 and self.num_clusters
            num_clusters_pos = torch.randint(2, 6, (1,)).item()
            pos_sampled_ids = self.trace.cluster_traces_kmeans(pos_tracks, n_clusters=num_clusters_pos, positive=True)
            if pos_sampled_ids is None:
                image = self._get_frame(video_path, frame_start, 0, (width, height))            
                conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, 0)
                item['conversations'].append({'from': 'human', 'value': conv_user})
                item['conversations'].append({'from': 'gpt', 'value': conv_gpt})                  
                item['image'].append(image)
                return item
        
            pos_tracks = pos_tracks[:, :, pos_sampled_ids.bool()]
            pos_visibility = pos_visibility[:, :, pos_sampled_ids.bool()]
            pos_tracks_history = pos_tracks_history[:, :, pos_sampled_ids.bool()]
            pos_visibility_history = pos_visibility_history[:, :, pos_sampled_ids.bool()]

            # clustering for negative traces
            num_clusters_neg = torch.randint(6, 15, (1,)).item()
            neg_sampled_ids = self.trace.cluster_traces_kmeans(neg_tracks, n_clusters=num_clusters_neg)
            if neg_sampled_ids is None:
                image = self._get_frame(video_path, frame_start, 0, (width, height))            
                conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, 0)
                item['conversations'].append({'from': 'human', 'value': conv_user})
                item['conversations'].append({'from': 'gpt', 'value': conv_gpt})                  
                item['image'].append(image)
                return item

            neg_tracks = neg_tracks[:, :, neg_sampled_ids.bool()]
            neg_tracks_history = neg_tracks_history[:, :, neg_sampled_ids.bool()]

            image = self._get_frame(video_path, frame_start, frame_pos, (width, height))
            if image is None:
                image = self._get_frame(video_path, frame_start, 0, (width, height))            
                conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, 0)
                item['conversations'].append({'from': 'human', 'value': conv_user})
                item['conversations'].append({'from': 'gpt', 'value': conv_gpt})                  
                item['image'].append(image)
                return item
            
            # image = tom_prompting(self.trace, image, pos_tracks_history, neg_tracks_history, draw_som_positive=False, draw_som_negative=False)
            image, pos_traces_to_mark, neg_traces_to_mark, pos_mark_ids, neg_mark_ids, all_idx = \
                som_prompting(image, pos_tracks, neg_tracks, draw_som_positive=True, draw_som_negative=True)

            # visualize the traces
            if self.show_trace:
                images = [image] * pos_tracks.shape[1]
                video = torch.stack([torchvision.transforms.ToTensor()(img) for img in images])[None].float()*255    
                self.trace.visualizer.save_dir = "./release/videos"
                _ = self.trace.visualize(video, pos_tracks, pos_visibility, filename=f"tom_{item['video'][0].replace('/', '_').replace('.MP4', '')}", mode="rainbow")

            mark_ids = sorted([key for key in pos_traces_to_mark.keys()] + [key for key in neg_traces_to_mark.keys()])
            pos_traces_to_mark = dict(sorted(pos_traces_to_mark.items()))
        
            mark_trace_history = ''
            mark_trace_future = ''

            valid_marks = {}
            speeds = {}
            for key, val in pos_traces_to_mark.items():
                # random select a frame position but not the last frame
                # frame_pos = torch.randint(0, trace.size(0)-1, (1,)).item()
                trace = val[0]
                trace[:, 0] = self.spatial_quant_size * trace[:, 0] / width
                trace[:, 1] = self.spatial_quant_size * trace[:, 1] / height

                trace_temp = trace.clone()
                # remove (almost) static points
                trace_temp = self.trace.remove_close_points_tensor(trace_temp, 2)
                # remove invisible points
                trace_temp = trace_temp[(trace_temp > 0).sum(1) == 2]
                if trace_temp.size(0) <= step_to_predict // 4:
                    continue
                # calulate motion speed
                # if trace_temp.size(0) < step_to_predict:
                #     trace_temp = torch.cat([trace_temp, trace_temp[-1].repeat(step_to_predict - trace_temp.size(0), 1)], dim=0)
                # elif trace_temp.size(0) > step_to_predict:
                #     trace_temp = trace_temp[:step_to_predict]   

                # calcualte speed
                speed = torch.norm(trace_temp[1:] - trace_temp[:-1], dim=1).mean()
                if torch.isnan(speed):
                    continue

                speeds[key] = speed.item()
                
                if speed < self.settings['trace_processor']['postive_speed_threshold']:
                    continue                
                # trace_history = trace[0]
                # val_str_history = '[' + ','.join([f'[{x[0]},{x[1]}]' for x in trace_history.tolist()]) + ']'
                # mark_trace_history += f'\"Mark {key}\": \"{val_str_history}\"\n'    
                # round trace_temp
                if self.remove_static_trace_pts:
                    valid_marks[key] = trace_temp.int()
                else:
                    valid_marks[key] = trace.int()

                # NOTE: there was a bug here
                val_str_future = '[' + ','.join([f'[{x[0]},{x[1]}]' for x in valid_marks[key][1:].tolist()]) + ']'

                mark_trace_future += f'\"Mark {key}\": \"{val_str_future}\"\n\n'      
            
            if len(mark_trace_future) > 0:

                num_future_steps = [val.shape[0]-1 for val in valid_marks.values()]
                step_to_predict = max(num_future_steps)                

                # find the maximal steps from valid_marks
                if item['dataset_tag'] != 'human_instruction':
                    if self.mm_use_trace_speed:
                        # calculate the average speed of the marks
                        avg_speed = int(sum(speeds.values()) / len(speeds))
                        conv_user = (
                            f"{self.image_placeholder}\nThe image is split into {self.spatial_quant_size}x{self.spatial_quant_size} grids, and labeled with numeric marks {mark_ids}.\n"
                            f"The person is doing: {gpt_response_todo}. To finish the task, how to move the numerical marks in the image with speed {avg_speed} for the next {step_to_predict} steps?\n"
                        )
                    else:
                        conv_user = (
                            f"{self.image_placeholder}\nThe image is split into {self.spatial_quant_size}x{self.spatial_quant_size} grids, and labeled with numeric marks {mark_ids}.\n"
                            f"The person is doing: {gpt_response_todo}. To finish the task, how to move the numerical marks in the image for the next {step_to_predict} steps?\n"
                        )
                else:
                    if self.mm_use_trace_speed:
                        # calculate the average speed of the marks
                        avg_speed = int(sum(speeds.values()) / len(speeds))
                        conv_user = (
                            f"{self.image_placeholder}\nThe image is split into {self.spatial_quant_size}x{self.spatial_quant_size} grids, and labeled with numeric marks {mark_ids}.\n"
                            f"The person is saying: {gpt_response_todo}. To finish the task, how to move the numerical marks in the image with speed {avg_speed} for the next {step_to_predict} steps?\n"
                        )                        
                    else:                    
                        conv_user = (
                            f"{self.image_placeholder}\nThe image is split into {self.spatial_quant_size}x{self.spatial_quant_size} grids, and labeled with numeric marks {mark_ids}.\n"
                            f"The person is saying: {gpt_response_todo}. To finish the task, how to move the numerical marks in the image for the next {step_to_predict} steps?\n"
                        )
                # if self.mm_use_trace_speed:
                #     # calculate speed
                #     formmated_val = '. '.join([f"Mark {key} at [{val[0][0].item()},{val[0][1].item()}] will move {val.shape[0]-1} steps with speed {round(speeds[key])}" for key, val in valid_marks.items()])       
                # else:
                formmated_val = ', '.join([f"Mark {key} at [{val[0][0].item()},{val[0][1].item()}]" for key, val in valid_marks.items()])       
                if self.mm_use_trace_start_end:
                    mark_trace_future = f'<trace_start>{mark_trace_future}<trace_end>'                      
                conv_gpt = f"{formmated_val} should be moved, and their future positions are:\n\n{mark_trace_future}"
                
                item['conversations'].append({'from': 'human', 'value': conv_user})
                item['conversations'].append({'from': 'gpt', 'value': conv_gpt})     
                item['image'].append(image)
            else:
                for key, val in neg_traces_to_mark.items():
                    trace = val[0]
                    trace[:, 0] = self.spatial_quant_size * trace[:, 0] / width
                    trace[:, 1] = self.spatial_quant_size * trace[:, 1] / height

                conv_user, conv_gpt, image = self._construct_conv_som(item, image, visual_traces, frame_pos, pos_traces_to_mark, neg_traces_to_mark, normalize=False)
                item['conversations'].append({'from': 'human', 'value': conv_user})
                item['conversations'].append({'from': 'gpt', 'value': conv_gpt})     
                item['image'].append(image)
            
            import pdb; pdb.set_trace()
            return item
        

    def _get_frames(self, video_path, frame_start, frame_end, size):   
        try:
            vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
            num_frames = len(vr)
            if frame_end >= num_frames:
                frame_end = num_frames - 1        
            frame_idx = list(range(frame_start, frame_end))
            images = vr.get_batch(frame_idx).asnumpy()
            # https://github.com/dmlc/decord/issues/208
            vr.seek(0)
            # convert image to rgb format   
            # reduce image size to speed up the process
            size = (size[0]//2, size[1]//2)             
            images = [Image.fromarray(image).resize(size) for image in images]                                      
            return images
        except Exception as e:
            print(f"Failed to read frames from video {video_path}")
            return None    
  
    def _get_frames_with_idx(self, video_path, frame_idx, size):   
        if video_path.endswith('.jpg') or video_path.endswith('.png'):
            images = []
            # read all images in frame_idx
            for idx in frame_idx[:-1]:
                video_path_temp = video_path.replace(f'{frame_idx[-1]}.jpg', f'{idx}.jpg').replace(f'{frame_idx[-1]}.png', f'{idx}.png')
                if not os.path.exists(video_path_temp):
                    continue
                image = Image.open(video_path_temp).resize(size)
                images.append(image)
            image = Image.open(video_path).resize(size)
            images.append(image)
            return images
        try:
            vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
            num_frames = len(vr)
            # remove frames that are out of range in frame_idx
            frame_idx = [idx for idx in frame_idx if idx < num_frames]
            images = vr.get_batch(frame_idx).asnumpy()
            # https://github.com/dmlc/decord/issues/208
            vr.seek(0)
            # convert image to rgb format   
            # reduce image size to speed up the process
            # size = (size[0]//2, size[1]//2)             
            images = [Image.fromarray(image).resize(size) for image in images]                                      
            return images
        except Exception as e:
            print(f"Failed to read frames from video {video_path}")
            return None   

    def _construct_caption(self, item, video_path, visual_traces):
        """
        v4->v5: add trace of mark
        """        
        if video_path is None and visual_traces is None:
            dummy_conversations = []
            dummy_conversations.append({'from': 'human', 'value': f"{self.image_placeholder}\nWhat is in this image?"})
            dummy_conversations.append({'from': 'gpt', 'value': "This is a blank image."})            
            item['conversations'] = dummy_conversations
            item['image'] = None  
            return item
        
        if 'image_size' not in item:
            assert '(height,width)' in item, f"image_size not in item and (height,width) not in item"
            item['image_size'] = item['(height,width)'][::-1]            
        
        if isinstance(item['image_size'][0], torch.Tensor):
            width, height = item['image_size'][0].item(), item['image_size'][1].item()
            frame_start, frame_end = item['frame_interval'][0].item(), item['frame_interval'][1].item()
            task_description = item['global_instructions'][0]
            gpt_response = item['gpt_response'][0]
        else:
            width, height = item['image_size']
            frame_start, frame_end = item['frame_interval']     
            task_description = item['global_instructions']
            gpt_response = item['gpt_response']
        
        gpt_response = self._process_gpt_response(gpt_response, task_description)

        item['image'] = self._get_frames(video_path, frame_start, frame_end, (width, height))
        
        if item['image'] is not None:
            image_placeholder = ''.join([self.image_placeholder] * len(item['image']))
            conv_user = (
                f'{image_placeholder}\nWhat do you see in the first image? And what will the person do next?\n'
            )
            conv_gpt = gpt_response + '\n'
            item['conversations'] = [
                {'from': 'human', 'value': conv_user},
                {'from': 'gpt', 'value': conv_gpt}                
            ]
        else:
            image_placeholder = ''.join([self.image_placeholder])
            conv_user = (
                f'{image_placeholder}\nWhat is in this image?\n'
            )
            conv_gpt = "This is a blank image.\n"
            item['conversations'] = [
                {'from': 'human', 'value': conv_user},
                {'from': 'gpt', 'value': conv_gpt}                
            ]      
        return item