llmidrec.py 8.1 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliate
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import transformers
from transformers import AutoConfig, AutoModelForCausalLM
from logging import getLogger

from REC.utils.enum_type import InputType
from REC.model.basemodel import BaseModel, all_gather
from REC.model.HLLM.modeling_llama import LlamaForCausalLM
from REC.model.HLLM.modeling_bert import BertModel


class LLMIDRec(BaseModel):
    input_type = InputType.SEQ

    def __init__(self, config, dataload):
        super(LLMIDRec, self).__init__()
        self.logger = getLogger()

        self.user_pretrain_dir = config['user_pretrain_dir']
        self.gradient_checkpointing = config['gradient_checkpointing']
        self.use_ft_flash_attn = config['use_ft_flash_attn']
        self.logger.info(f"create user llm")
        self.user_llm = self.create_llm(self.user_pretrain_dir, config['user_llm_init'])

        self.item_num = dataload.item_num
        self.item_embedding = nn.Embedding(self.item_num, config['item_embed_dim'], padding_idx=0)
        self.item_id_proj_tower = nn.Identity() if config['item_embed_dim'] == self.user_llm.config.hidden_size else nn.Linear(config['item_embed_dim'], self.user_llm.config.hidden_size, bias=False)
        self.item_embedding.weight.data.normal_(mean=0.0, std=0.02)

        self.loss = config['loss']
        if self.loss == 'nce':
            if config['fix_temp']:
                self.logger.info(f"Fixed logit_scale 20")
                self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.05), requires_grad=False)
            else:
                self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
            self.nce_thres = config['nce_thres'] if config['nce_thres'] else 0.99
            self.num_negatives = config['num_negatives']
            self.logger.info(f"nce thres setting to {self.nce_thres}")
        else:
            raise NotImplementedError(f"Only nce is supported")

    def create_llm(self, pretrain_dir, init=True):
        self.logger.info(f"******* create LLM {pretrain_dir} *******")
        hf_config = AutoConfig.from_pretrained(pretrain_dir, trust_remote_code=True)
        self.logger.info(f"hf_config: {hf_config}")
        hf_config.gradient_checkpointing = self.gradient_checkpointing
        hf_config.use_cache = False
        hf_config.output_hidden_states = True
        hf_config.return_dict = True

        self.logger.info("xxxxx starting loading checkpoint")
        if isinstance(hf_config, transformers.LlamaConfig):
            hf_config.use_ft_flash_attn = self.use_ft_flash_attn
            self.logger.info(f'Using flash attention {hf_config.use_ft_flash_attn} for llama')
            self.logger.info(f'Init {init} for llama')
            if init:
                return LlamaForCausalLM.from_pretrained(pretrain_dir, config=hf_config)
            else:
                return LlamaForCausalLM(config=hf_config).bfloat16()
        elif isinstance(hf_config, transformers.BertConfig):
            hf_config.use_ft_flash_attn = self.use_ft_flash_attn
            self.logger.info(f'Using flash attention {hf_config.use_ft_flash_attn} for bert')
            self.logger.info(f'Init {init} for bert')
            if init:
                return BertModel.from_pretrained(pretrain_dir, config=hf_config)
            else:
                return BertModel(config=hf_config).bfloat16()
        else:
            return AutoModelForCausalLM.from_pretrained(
                self.local_dir, config=hf_config
            )

    def forward(self, interaction):
        items, neg_items, masked_index = interaction  # [batch, 2, seq_len]    #[batch, max_seq_len-1]
        if self.num_negatives:
            neg_items = torch.randint(
                low=1,
                high=self.item_num,
                size=(items.size(0), items.size(1) - 1, self.num_negatives),
                dtype=items.dtype,
                device=items.device,
            )

        pos_items_embs = self.item_id_proj_tower(self.item_embedding(items))  # [batch, 2, max_seq_len+1, dim]
        neg_items_embs = self.item_id_proj_tower(self.item_embedding(neg_items))  # [batch, 2, max_seq_len+1, dim]

        input_emb = pos_items_embs[:, :-1, :]  # [batch, max_seq_len, dim]
        target_pos_embs = pos_items_embs[:, 1:, :]  # [batch, max_seq_len, dim]
        neg_embedding_all = neg_items_embs  # [batch, max_seq_len, dim]
        output_embs = self.user_llm(inputs_embeds=input_emb, attention_mask=masked_index).hidden_states[-1]

        with torch.no_grad():
            self.logit_scale.clamp_(0, np.log(100))
        logit_scale = self.logit_scale.exp()
        output_embs = output_embs / output_embs.norm(dim=-1, keepdim=True)
        target_pos_embs = target_pos_embs / target_pos_embs.norm(dim=-1, keepdim=True)
        neg_embedding_all = neg_embedding_all / neg_embedding_all.norm(dim=-1, keepdim=True)
        pos_logits = F.cosine_similarity(output_embs, target_pos_embs, dim=-1).unsqueeze(-1)
        if self.num_negatives:
            neg_logits = F.cosine_similarity(output_embs.unsqueeze(2), neg_embedding_all, dim=-1)
            fix_logits = F.cosine_similarity(target_pos_embs.unsqueeze(2), neg_embedding_all, dim=-1)
        else:
            D = neg_embedding_all.size(-1)
            neg_embedding_all = all_gather(neg_embedding_all, sync_grads=True).reshape(-1, D)  # [num, dim]
            neg_embedding_all = neg_embedding_all.transpose(-1, -2)
            neg_logits = torch.matmul(output_embs, neg_embedding_all)
            fix_logits = torch.matmul(target_pos_embs, neg_embedding_all)
        neg_logits[fix_logits > self.nce_thres] = torch.finfo(neg_logits.dtype).min
        logits = torch.cat([pos_logits, neg_logits], dim=-1)
        logits = logits[masked_index.bool()] * logit_scale
        labels = torch.zeros(logits.size(0), device=logits.device, dtype=torch.int64)
        model_out = {}
        model_out['loss'] = F.cross_entropy(logits, labels)
        model_out['nce_samples'] = (logits > torch.finfo(logits.dtype).min/100).sum(dim=1).float().mean()
        for k in [1, 5, 10, 50, 100]:
            if k > logits.size(1):
                break
            indices = logits.topk(k, dim=1).indices
            model_out[f"nce_top{k}_acc"] = labels.view(-1, 1).eq(indices).any(dim=1).float().mean()
        return model_out

    @torch.no_grad()
    def predict(self, item_seq, time_seq, item_feature):

        item_emb = self.item_id_proj_tower(self.item_embedding(item_seq))
        attention_mask = (item_seq > 0).int()
        output_embs = self.user_llm(inputs_embeds=item_emb, attention_mask=attention_mask).hidden_states[-1]
        seq_output = output_embs[:, -1]
        seq_output = seq_output / seq_output.norm(dim=-1, keepdim=True)

        scores = torch.matmul(seq_output, item_feature.t())
        return scores

    @torch.no_grad()
    def compute_item_all(self):
        weight = self.item_id_proj_tower(self.item_embedding(torch.arange(self.item_num, device=self.item_embedding.weight.device)))
        return weight / weight.norm(dim=-1, keepdim=True)

    def get_attention_mask(self, item_seq, bidirectional=False):
        """Generate left-to-right uni-directional or bidirectional attention mask for multi-head attention."""
        attention_mask = (item_seq != 0)
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)  # torch.bool
        if not bidirectional:
            extended_attention_mask = torch.tril(extended_attention_mask.expand((-1, -1, item_seq.size(-1), -1)))
        extended_attention_mask = torch.where(extended_attention_mask, 0., -1e9)
        return extended_attention_mask