utils.py 6.5 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2024 westlake-repl
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliate
# SPDX-License-Identifier: MIT
# This file has been modified by Junyi Chen.
#
# Original file was released under MIT, with the full license text
# available at https://choosealicense.com/licenses/mit/.
#
# This modified file is released under the same license.

import copy
import importlib
import os
import pickle
from logging import getLogger
from REC.data.dataset import *
from REC.utils import set_color
from functools import partial
from .dataload import Data
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import random
import math
import copy


def load_data(config):
    dataload = Data(config)
    return dataload


def bulid_dataloader(config, dataload):
    '''
    split dataset, generate user history sequence, train/valid/test dataset
    '''
    dataset_dict = {
        'SASRec': ('SEQTrainDataset', 'SeqEvalDataset', 'seq_eval_collate'),
        'HSTU': ('SEQTrainDataset', 'SeqEvalDataset', 'seq_eval_collate'),
        'LLMIDRec': ('SEQTrainDataset', 'SeqEvalDataset', 'seq_eval_collate'),
        'HLLM': (('TextSEQTrainDataset', 'customize_rmpad_collate'), 'SeqEvalDataset', 'seq_eval_collate')
    }

    model_name = config['model']
    dataload.build()

    dataset_module = importlib.import_module('REC.data.dataset')
    train_set_name, test_set_name, collate_fn_name = dataset_dict[model_name]

    if isinstance(train_set_name, tuple):
        train_set_class = getattr(dataset_module, train_set_name[0])
        train_collate_fn = getattr(dataset_module, train_set_name[1])
    else:
        train_set_class = getattr(dataset_module, train_set_name)
        train_collate_fn = None

    test_set_class = getattr(dataset_module, test_set_name)
    eval_collate_fn = getattr(dataset_module, collate_fn_name)

    train_data = train_set_class(config, dataload)
    valid_data = test_set_class(config, dataload, phase='valid')
    test_data = test_set_class(config, dataload, phase='test')

    logger = getLogger()
    logger.info(
        set_color('[Training]: ', 'pink') + set_color('train_batch_size', 'cyan') + ' = ' +
        set_color(f'[{config["train_batch_size"]}]', 'yellow')
    )
    logger.info(
        set_color('[Evaluation]: ', 'pink') + set_color('eval_batch_size', 'cyan') + ' = ' +
        set_color(f'[{config["eval_batch_size"]}]', 'yellow')
    )

    train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
    valid_sampler = NonConsecutiveSequentialDistributedSampler(valid_data)
    test_sampler = NonConsecutiveSequentialDistributedSampler(test_data)

    num_workers = 8
    rank = torch.distributed.get_rank()
    seed = torch.initial_seed()

    init_fn = partial(
        worker_init_fn, num_workers=num_workers, rank=rank,
        seed=seed
    )

    if train_collate_fn:
        train_loader = DataLoader(train_data, batch_size=config['train_batch_size'], num_workers=num_workers,
                                  pin_memory=True, sampler=train_sampler, collate_fn=train_collate_fn, worker_init_fn=init_fn)
    else:
        train_loader = DataLoader(train_data, batch_size=config['train_batch_size'], num_workers=num_workers,
                                  pin_memory=True, sampler=train_sampler, worker_init_fn=init_fn)
    valid_loader = DataLoader(valid_data, batch_size=config['eval_batch_size'], num_workers=num_workers,
                              pin_memory=True, sampler=valid_sampler, collate_fn=eval_collate_fn)

    test_loader = DataLoader(test_data, batch_size=config['eval_batch_size'], num_workers=num_workers,
                             pin_memory=True, sampler=test_sampler, collate_fn=eval_collate_fn)

    return train_loader, valid_loader, test_loader


def worker_init_fn(worker_id, num_workers, rank, seed):
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)


def worker_init_reset_seed(worker_id):
    initial_seed = torch.initial_seed() % 2 ** 31
    worker_seed = initial_seed + worker_id + torch.distributed.get_rank()
    random.seed(worker_seed)
    np.random.seed(worker_seed)


class NonConsecutiveSequentialDistributedSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, dataset, rank=None, num_replicas=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.total_size = len(self.dataset)
        self.num_samples = math.ceil(
            (self.total_size-self.rank)/self.num_replicas
        )

    def __iter__(self):
        indices = list(range(len(self.dataset)))
        indices = indices[self.rank:self.total_size:self.num_replicas]
        return iter(indices)

    def __len__(self):
        return self.num_samples


class ConsecutiveSequentialDistributedSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, dataset, batch_size, rank=None, num_replicas=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.batch_size = batch_size
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.batch_size / self.num_replicas)) * self.batch_size
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += [indices[-1]] * (self.total_size - len(indices))
        # subsample
        indices = indices[self.rank * self.num_samples: (self.rank + 1) * self.num_samples]
        return iter(indices)

    def __len__(self):
        return self.num_samples