dataload.py 13.1 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) 2024 westlake-repl
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliate
# SPDX-License-Identifier: MIT
# This file has been modified by Junyi Chen.
#
# Original file was released under MIT, with the full license text
# available at https://choosealicense.com/licenses/mit/.
#
# This modified file is released under the same license.

import copy
import pickle
import os
import yaml
from collections import Counter
from logging import getLogger

import numpy as np
import pandas as pd
import torch

from REC.utils import set_color
from REC.utils.enum_type import InputType
from torch_geometric.utils import degree


class Data:
    def __init__(self, config):
        self.config = config
        self.dataset_path = config['data_path']
        self.dataset_name = config['dataset']
        self.data_split = config['data_split']
        self.item_data = config['item_data']
        self.logger = getLogger()
        self._from_scratch()

    def _from_scratch(self):
        self.logger.info(set_color(f'Loading {self.__class__} from scratch with {self.data_split = }.', 'green'))
        self._load_inter_feat(self.dataset_name, self.dataset_path, self.item_data)
        self._data_processing()

    def _load_inter_feat(self, token, dataset_path, item_data=None):
        inter_feat_path = os.path.join(dataset_path, f'{token}.csv')
        if not os.path.isfile(inter_feat_path):
            raise ValueError(f'File {inter_feat_path} not exist.')

        df = pd.read_csv(
            inter_feat_path, delimiter=',', dtype={'item_id': str, 'user_id': str, 'timestamp': int}, header=0, names=['item_id', 'user_id', 'timestamp']
        )
        self.logger.info(f'Interaction feature loaded successfully from [{inter_feat_path}].')
        self.inter_feat = df

        if item_data:
            item_data_path = os.path.join(dataset_path, f'{item_data}.csv')
            item_df = pd.read_csv(
                item_data_path, delimiter=',', dtype={'item_id': str, 'user_id': str, 'timestamp': int}, header=0, names=['item_id', 'user_id', 'timestamp']
            )
            self.item_feat = item_df
            self.logger.info(f'Item feature loaded successfully from [{item_data}].')

    def _data_processing(self):

        self.id2token = {}
        self.token2id = {}
        remap_list = ['user_id', 'item_id']
        for feature in remap_list:
            if feature == 'item_id' and self.item_data:
                feats = self.item_feat[feature]
                feats_raw = self.inter_feat[feature]
            else:
                feats = self.inter_feat[feature]
            new_ids_list, mp = pd.factorize(feats)
            mp = ['[PAD]'] + list(mp)
            token_id = {t: i for i, t in enumerate(mp)}
            if feature == 'item_id' and self.item_data:
                _, raw_mp = pd.factorize(feats_raw)
                for x in raw_mp:
                    if x not in token_id:
                        token_id[x] = len(token_id)
                        mp.append(x)
            mp = np.array(mp)

            self.id2token[feature] = mp
            self.token2id[feature] = token_id
            self.inter_feat[feature] = self.inter_feat[feature].map(token_id)

        self.user_num = len(self.id2token['user_id'])
        self.item_num = len(self.id2token['item_id'])
        self.logger.info(f"{self.user_num = } {self.item_num = }")
        self.logger.info(f"{self.inter_feat['item_id'].isna().any() = } {self.inter_feat['user_id'].isna().any() = }")
        self.inter_num = len(self.inter_feat)
        self.uid_field = 'user_id'
        self.iid_field = 'item_id'
        self.user_seq = None
        self.train_feat = None
        self.feat_name_list = ['inter_feat']  # self.inter_feat

    def build(self):
        self.logger.info(f"build {self.dataset_name} dataload")
        self.sort(by='timestamp')
        user_list = self.inter_feat['user_id'].values
        item_list = self.inter_feat['item_id'].values
        timestamp_list = self.inter_feat['timestamp'].values
        grouped_index = self._grouped_index(user_list)

        user_seq = {}
        time_seq = {}
        for uid, index in grouped_index.items():
            user_seq[uid] = item_list[index]
            time_seq[uid] = timestamp_list[index]

        self.user_seq = user_seq
        self.time_seq = time_seq
        train_feat = dict()
        indices = []

        for index in grouped_index.values():
            indices.extend(list(index)[:-2])
        for k in self.inter_feat:
            train_feat[k] = self.inter_feat[k].values[indices]

        if self.config['MODEL_INPUT_TYPE'] == InputType.AUGSEQ:
            train_feat = self._build_aug_seq(train_feat)
        elif self.config['MODEL_INPUT_TYPE'] == InputType.SEQ:
            train_feat = self._build_seq(train_feat)

        self.train_feat = train_feat

    def _grouped_index(self, group_by_list):
        index = {}
        for i, key in enumerate(group_by_list):
            if key not in index:
                index[key] = [i]
            else:
                index[key].append(i)
        return index

    def _build_seq(self, train_feat):
        max_item_list_len = self.config['MAX_ITEM_LIST_LENGTH']+1

        uid_list, item_list_index = [], []
        seq_start = 0
        save = False
        user_list = train_feat['user_id']
        user_list = np.append(user_list, -1)
        last_uid = user_list[0]
        for i, uid in enumerate(user_list):
            if last_uid != uid:
                save = True
            if save:
                if (self.data_split is None or self.data_split == True) and i - seq_start > max_item_list_len:
                    offset = (i - seq_start) % max_item_list_len
                    seq_start += offset
                    x = torch.arange(seq_start, i)
                    sx = torch.split(x, max_item_list_len)
                    for sub in sx:
                        uid_list.append(last_uid)
                        item_list_index.append(slice(sub[0], sub[-1]+1))
                else:
                    uid_list.append(last_uid)
                    item_list_index.append(slice(seq_start, i))  # maybe too long but will be truncated in dataloader

                save = False
                last_uid = uid
                seq_start = i

        seq_train_feat = {}
        seq_train_feat['user_id'] = np.array(uid_list)
        seq_train_feat['item_seq'] = []
        seq_train_feat['time_seq'] = []
        for index in item_list_index:
            seq_train_feat['item_seq'].append(train_feat['item_id'][index])
            seq_train_feat['time_seq'].append(train_feat['timestamp'][index])

        return seq_train_feat

    def _build_aug_seq(self, train_feat):
        max_item_list_len = self.config['MAX_ITEM_LIST_LENGTH']+1

        # by = ['user_id', 'timestamp']
        # ascending = [True, True]
        # for b, a in zip(by[::-1], ascending[::-1]):
        #     index = np.argsort(train_feat[b], kind='stable')
        #     if not a:
        #         index = index[::-1]
        #     for k in train_feat:
        #         train_feat[k] = train_feat[k][index]

        uid_list, item_list_index = [], []
        seq_start = 0
        save = False
        user_list = train_feat['user_id']
        user_list = np.append(user_list, -1)
        last_uid = user_list[0]
        for i, uid in enumerate(user_list):
            if last_uid != uid:
                save = True
            if save:
                if i - seq_start > max_item_list_len:
                    offset = (i - seq_start) % max_item_list_len
                    seq_start += offset
                    x = torch.arange(seq_start, i)
                    sx = torch.split(x, max_item_list_len)
                    for sub in sx:
                        uid_list.append(last_uid)
                        item_list_index.append(slice(sub[0], sub[-1]+1))
                else:
                    uid_list.append(last_uid)
                    item_list_index.append(slice(seq_start, i))
                save = False
                last_uid = uid
                seq_start = i

        seq_train_feat = {}
        aug_uid_list = []
        aug_item_list = []
        for uid, item_index in zip(uid_list, item_list_index):
            st = item_index.start
            ed = item_index.stop
            lens = ed - st
            for sub_idx in range(1, lens):
                aug_item_list.append(train_feat['item_id'][slice(st, st+sub_idx+1)])
                aug_uid_list.append(uid)

        seq_train_feat['user_id'] = np.array(aug_uid_list)
        seq_train_feat['item_seq'] = aug_item_list

        return seq_train_feat

    def sort(self, by, ascending=True):

        if isinstance(self.inter_feat, pd.DataFrame):
            self.inter_feat.sort_values(by=by, ascending=ascending, inplace=True)

        else:
            if isinstance(by, str):
                by = [by]

            if isinstance(ascending, bool):
                ascending = [ascending]

            if len(by) != len(ascending):
                if len(ascending) == 1:
                    ascending = ascending * len(by)
                else:
                    raise ValueError(f'by [{by}] and ascending [{ascending}] should have same length.')
            for b, a in zip(by[::-1], ascending[::-1]):
                index = np.argsort(self.inter_feat[b], kind='stable')
                if not a:
                    index = index[::-1]
                for k in self.inter_feat:
                    self.inter_feat[k] = self.inter_feat[k][index]

    @property
    def avg_actions_of_users(self):
        """Get the average number of users' interaction records.

        Returns:
            numpy.float64: Average number of users' interaction records.
        """
        if isinstance(self.inter_feat, pd.DataFrame):
            return np.mean(self.inter_feat.groupby(self.uid_field).size())
        else:
            return np.mean(list(Counter(self.inter_feat[self.uid_field]).values()))

    @property
    def avg_actions_of_items(self):
        """Get the average number of items' interaction records.

        Returns:
            numpy.float64: Average number of items' interaction records.
        """
        if isinstance(self.inter_feat, pd.DataFrame):
            return np.mean(self.inter_feat.groupby(self.iid_field).size())
        else:
            return np.mean(list(Counter(self.inter_feat[self.iid_field]).values()))

    @property
    def sparsity(self):
        """Get the sparsity of this dataset.

        Returns:
            float: Sparsity of this dataset.
        """
        return 1 - self.inter_num / self.user_num / self.item_num

    def __repr__(self):
        return self.__str__()

    def __str__(self):
        info = [set_color(self.dataset_name, 'pink')]
        if self.uid_field:
            info.extend([
                set_color('The number of users', 'blue') + f': {self.user_num}',
                set_color('Average actions of users', 'blue') + f': {self.avg_actions_of_users}'
            ])
        if self.iid_field:
            info.extend([
                set_color('The number of items', 'blue') + f': {self.item_num}',
                set_color('Average actions of items', 'blue') + f': {self.avg_actions_of_items}'
            ])
        info.append(set_color('The number of inters', 'blue') + f': {self.inter_num}')
        if self.uid_field and self.iid_field:
            info.append(set_color('The sparsity of the dataset', 'blue') + f': {self.sparsity * 100}%')

        return '\n'.join(info)

    def copy(self, new_inter_feat):
        """Given a new interaction feature, return a new :class:`Dataset` object,
        whose interaction feature is updated with ``new_inter_feat``, and all the other attributes the same.

        Args:
            new_inter_feat (Interaction): The new interaction feature need to be updated.

        Returns:
            :class:`~Dataset`: the new :class:`~Dataset` object, whose interaction feature has been updated.
        """
        nxt = copy.copy(self)
        nxt.inter_feat = new_inter_feat
        return nxt

    def counter(self, field):
        if isinstance(self.inter_feat, pd.DataFrame):
            return Counter(self.inter_feat[field].values)
        else:
            return Counter(self.inter_feat[field])

    @property
    def user_counter(self):
        return self.counter('user_id')

    @property
    def item_counter(self):
        return self.counter('item_id')

    def get_norm_adj_mat(self):
        r"""Get the normalized interaction matrix of users and items.
        Construct the square matrix from the training data and normalize it
        using the laplace matrix.
        .. math::
            A_{hat} = D^{-0.5} \times A \times D^{-0.5}
        Returns:
            The normalized interaction matrix in Tensor.
        """

        row = torch.tensor(self.train_feat[self.uid_field])
        col = torch.tensor(self.train_feat[self.iid_field]) + self.user_num
        edge_index1 = torch.stack([row, col])
        edge_index2 = torch.stack([col, row])
        edge_index = torch.cat([edge_index1, edge_index2], dim=1)

        deg = degree(edge_index[0], self.user_num + self.item_num)

        norm_deg = 1. / torch.sqrt(torch.where(deg == 0, torch.ones([1]), deg))
        edge_weight = norm_deg[edge_index[0]] * norm_deg[edge_index[1]]

        return edge_index, edge_weight