test_tokenization_common.py 16.4 KB
Newer Older
yuguo960516's avatar
gpt2  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import inspect
import os
import pickle
import re
import shutil
import tempfile
from typing import Tuple

from libai.tokenizer import PreTrainedTokenizer
from tests.fixtures.utils import get_fixtures


def get_tests_dir(append_path=None):
    """
    Args:
        append_path: optional path to append to the tests dir path

    Return:
        The full path to the `tests` dir, so that the tests can be invoked from anywhere.
        Optionally `append_path` is joined after the `tests` dir the former is provided.

    """
    # this function caller's __file__
    caller__file__ = inspect.stack()[1][1]
    tests_dir = os.path.abspath(os.path.dirname(caller__file__))
    if append_path:
        return os.path.join(tests_dir, append_path)
    else:
        return tests_dir


class TokenizerTesterMixin:

    tokenizer_class = None

    def setUp(self):
        self.tokenizers_list = []
        get_fixtures("sample_text.txt")
        with open(f"{get_tests_dir()}/../fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()

        self.tmpdirname = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

    def get_clean_sequence(
        self, tokenizer, with_prefix_space=False, max_length=20
    ) -> Tuple[str, list]:
        toks = [
            (i, tokenizer.decode([i], clean_up_tokenization_spaces=False))
            for i in range(len(tokenizer))
        ]
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1]), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt)
        return output_txt, output_ids

    def get_tokenizers(self, **kwargs):
        return [self.get_tokenizer(**kwargs)]

    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def test_tokenizers_common_properties(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "init_inputs",
                    "init_kwargs",
                    "added_tokens_encoder",
                    "added_tokens_decoder",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))

    def test_save_and_load_tokenizer(self):
        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                before_tokens = tokenizer.encode(sample_text)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)

        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens(
                    {"additional_special_tokens": additional_special_tokens}
                )
                before_tokens = tokenizer.encode(sample_text)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn(
                    "new_additional_special_token", after_tokenizer.additional_special_tokens
                )

                shutil.rmtree(tmpdirname)

    def test_pickle_tokenizer(self):
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)

                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)

                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)

                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)

                subwords_loaded = tokenizer_new.tokenize(text)

                self.assertListEqual(subwords, subwords_loaded)

    def test_added_tokens_do_lower_case(self):
        tokenizers = self.get_tokenizers(do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

                special_token = tokenizer.all_special_tokens[0]

                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token

                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks

                new_toks = [
                    "aaaaa bbbbbb",
                    "cccccccccdddddddd",
                    "AAAAA BBBBBB",
                    "CCCCCCCCCDDDDDDDD",
                ]
                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 2)

                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)

                self.assertEqual(len(toks), len(toks2))
                self.assertListEqual(toks, toks2)
                self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer

                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = (
                    "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
                )
                tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)

                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)

        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                special_token = tokenizer.all_special_tokens[0]

                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token

                new_toks = [
                    "aaaaa bbbbbb",
                    "cccccccccdddddddd",
                    "AAAAA BBBBBB",
                    "CCCCCCCCCDDDDDDDD",
                ]

                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks

                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 4)

                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)

                self.assertEqual(len(toks), len(toks2))  # Length should still be the same
                self.assertNotEqual(
                    toks[1], toks2[1]
                )  # But at least the first non-special tokens should differ

                self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer

    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)

                # We usually have added tokens from the start in tests
                # because our vocab fixtures are smaller than the original vocabs
                # let's not assert this self.assertEqual(vocab_size, all_size)

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l")

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l"
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)

    def test_add_special_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)

                special_token = "[SPECIAL_TOKEN]"

                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token)
                self.assertEqual(len(encoded_special_token), 1)

                text = tokenizer.decode(
                    ids + encoded_special_token, clean_up_tokenization_spaces=False
                )
                encoded = tokenizer.encode(text)

                input_encoded = tokenizer.encode(input_text)
                special_token_id = tokenizer.encode(special_token)
                self.assertEqual(encoded, input_encoded + special_token_id)

                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)

    def test_internal_consistency(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)

                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text)
                self.assertListEqual(ids, ids_2)

                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)

                self.assertEqual(text_2, output_text)

    def test_encode_decode_with_spaces(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                new_toks = ["[ABC]", "[DEF]"]
                tokenizer.add_tokens(new_toks)
                input = "[ABC] [DEF] [ABC] [DEF]"
                encoded = tokenizer.encode(input)
                decoded = tokenizer.decode(encoded)
                self.assertEqual(decoded, input)

    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))

        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)

    def test_get_vocab(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()

                self.assertIsInstance(vocab, dict)
                self.assertEqual(len(vocab), len(tokenizer))

                for word, ind in vocab.items():
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

                tokenizer.add_tokens(["asdfasdfasdfasdf"])
                vocab = tokenizer.get_vocab()
                self.assertIsInstance(vocab, dict)
                self.assertEqual(len(vocab), len(tokenizer))