loss.py 6.37 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import List, Optional, Union

import torch
import torch.nn as nn
from omegaconf import ListConfig

from sat import mpu

from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...util import append_dims, instantiate_from_config


class StandardDiffusionLoss(nn.Module):

    def __init__(
        self,
        sigma_sampler_config,
        type='l2',
        offset_noise_level=0.0,
        batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
    ):
        super().__init__()

        assert type in ['l2', 'l1', 'lpips']

        self.sigma_sampler = instantiate_from_config(sigma_sampler_config)

        self.type = type
        self.offset_noise_level = offset_noise_level

        if type == 'lpips':
            self.lpips = LPIPS().eval()

        if not batch2model_keys:
            batch2model_keys = []

        if isinstance(batch2model_keys, str):
            batch2model_keys = [batch2model_keys]

        self.batch2model_keys = set(batch2model_keys)

    def __call__(self, network, denoiser, conditioner, input, batch):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key]
            for key in self.batch2model_keys.intersection(batch)
        }

        sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = (noise + append_dims(
                torch.randn(input.shape[0]).to(input.device), input.ndim) *
                     self.offset_noise_level)
            noise = noise.to(input.dtype)
        noised_input = input.float() + noise * append_dims(sigmas, input.ndim)
        model_output = denoiser(network, noised_input, sigmas, cond,
                                **additional_model_inputs)
        w = append_dims(denoiser.w(sigmas), input.ndim)
        return self.get_loss(model_output, input, w)

    def get_loss(self, model_output, target, w):
        if self.type == 'l2':
            return torch.mean(
                (w * (model_output - target)**2).reshape(target.shape[0],
                                                         -1), 1)
        elif self.type == 'l1':
            return torch.mean((w * (model_output - target).abs()).reshape(
                target.shape[0], -1), 1)
        elif self.type == 'lpips':
            loss = self.lpips(model_output, target).reshape(-1)
            return loss


class VideoDiffusionLoss(StandardDiffusionLoss):

    def __init__(self,
                 block_scale=None,
                 block_size=None,
                 min_snr_value=None,
                 fixed_frames=0,
                 **kwargs):
        self.fixed_frames = fixed_frames
        self.block_scale = block_scale
        self.block_size = block_size
        self.min_snr_value = min_snr_value
        super().__init__(**kwargs)

    def __call__(self, network, denoiser, conditioner, input, batch):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key]
            for key in self.batch2model_keys.intersection(batch)
        }

        alphas_cumprod_sqrt, idx = self.sigma_sampler(input.shape[0],
                                                      return_idx=True)
        #tensor([0.8585])

        if 'ref_noise_step' in self.share_cache:

            print(self.share_cache['ref_noise_step'])
            ref_noise_step = self.share_cache['ref_noise_step']
            ref_alphas_cumprod_sqrt = self.sigma_sampler.idx_to_sigma(
                torch.zeros(input.shape[0]).fill_(ref_noise_step).long())
            ref_alphas_cumprod_sqrt = ref_alphas_cumprod_sqrt.to(input.device)
            ref_x = self.share_cache['ref_x']
            ref_noise = torch.randn_like(ref_x)

            # *0.8505 + noise * 0.5128   sqrt(1-0.8505^2)**0.5
            ref_noised_input = ref_x * append_dims(ref_alphas_cumprod_sqrt, ref_x.ndim) \
                    + ref_noise * append_dims(
              (1 - ref_alphas_cumprod_sqrt**2) ** 0.5, ref_x.ndim
              )
            self.share_cache['ref_x'] = ref_noised_input

        alphas_cumprod_sqrt = alphas_cumprod_sqrt.to(input.device)
        idx = idx.to(input.device)

        noise = torch.randn_like(input)

        # broadcast noise
        mp_size = mpu.get_model_parallel_world_size()
        global_rank = torch.distributed.get_rank() // mp_size
        src = global_rank * mp_size
        torch.distributed.broadcast(idx,
                                    src=src,
                                    group=mpu.get_model_parallel_group())
        torch.distributed.broadcast(noise,
                                    src=src,
                                    group=mpu.get_model_parallel_group())
        torch.distributed.broadcast(alphas_cumprod_sqrt,
                                    src=src,
                                    group=mpu.get_model_parallel_group())

        additional_model_inputs['idx'] = idx

        if self.offset_noise_level > 0.0:
            noise = (noise + append_dims(
                torch.randn(input.shape[0]).to(input.device), input.ndim) *
                     self.offset_noise_level)

        noised_input = input.float() * append_dims(
            alphas_cumprod_sqrt, input.ndim) + noise * append_dims(
                (1 - alphas_cumprod_sqrt**2)**0.5, input.ndim)

        if 'concat_images' in batch.keys():
            cond['concat'] = batch['concat_images']

        # [2, 13, 16, 60, 90],[2] dict_keys(['crossattn', 'concat'])  dict_keys(['idx'])
        model_output = denoiser(network, noised_input, alphas_cumprod_sqrt,
                                cond, **additional_model_inputs)
        w = append_dims(1 / (1 - alphas_cumprod_sqrt**2), input.ndim)  # v-pred

        if self.min_snr_value is not None:
            w = min(w, self.min_snr_value)
        return self.get_loss(model_output, input, w)

    def get_loss(self, model_output, target, w):
        if self.type == 'l2':
            # model_output.shape
            # torch.Size([1, 2, 16, 60, 88])
            return torch.mean(
                (w * (model_output - target)**2).reshape(target.shape[0],
                                                         -1), 1)
        elif self.type == 'l1':
            return torch.mean((w * (model_output - target).abs()).reshape(
                target.shape[0], -1), 1)
        elif self.type == 'lpips':
            loss = self.lpips(model_output, target).reshape(-1)
            return loss