flow_video.py 10.3 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import math
import time
from functools import partial

import torch
import torch.nn as nn
from sgm.modules import UNCONDITIONAL_CONFIG
from sgm.modules.autoencoding.temporal_ae import VideoDecoder
from sgm.modules.diffusionmodules.loss import StandardDiffusionLoss
from sgm.modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from sgm.util import (append_dims, default, disabled_train, get_obj_from_str,
                      instantiate_from_config)
from torch import nn
from torchdiffeq import odeint


class FlowEngine(nn.Module):

    def __init__(self, args, **kwargs):
        super().__init__()
        model_config = args.model_config
        log_keys = model_config.get('log_keys', None)
        input_key = model_config.get('input_key', 'mp4')
        network_config = model_config.get('network_config', None)
        network_wrapper = model_config.get('network_wrapper', None)
        denoiser_config = model_config.get('denoiser_config', None)
        sampler_config = model_config.get('sampler_config', None)
        conditioner_config = model_config.get('conditioner_config', None)
        first_stage_config = model_config.get('first_stage_config', None)
        loss_fn_config = model_config.get('loss_fn_config', None)
        scale_factor = model_config.get('scale_factor', 1.0)
        latent_input = model_config.get('latent_input', False)
        disable_first_stage_autocast = model_config.get(
            'disable_first_stage_autocast', False)
        no_cond_log = model_config.get('disable_first_stage_autocast', False)
        not_trainable_prefixes = model_config.get(
            'not_trainable_prefixes', ['first_stage_model', 'conditioner'])
        compile_model = model_config.get('compile_model', False)
        en_and_decode_n_samples_a_time = model_config.get(
            'en_and_decode_n_samples_a_time', None)
        lr_scale = model_config.get('lr_scale', None)
        lora_train = model_config.get('lora_train', False)
        self.use_pd = model_config.get('use_pd', False)

        self.log_keys = log_keys
        self.input_key = input_key
        self.not_trainable_prefixes = not_trainable_prefixes
        self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
        self.lr_scale = lr_scale
        self.lora_train = lora_train
        self.noised_image_input = model_config.get('noised_image_input', False)
        self.noised_image_all_concat = model_config.get(
            'noised_image_all_concat', False)
        self.noised_image_dropout = model_config.get('noised_image_dropout',
                                                     0.0)
        if args.fp16:
            dtype = torch.float16
            dtype_str = 'fp16'
        elif args.bf16:
            dtype = torch.bfloat16
            dtype_str = 'bf16'
        else:
            dtype = torch.float32
            dtype_str = 'fp32'
        self.dtype = dtype
        self.dtype_str = dtype_str

        network_config['params']['dtype'] = dtype_str
        model = instantiate_from_config(network_config)
        self.model = get_obj_from_str(
            default(network_wrapper,
                    OPENAIUNETWRAPPER))(model,
                                        compile_model=compile_model,
                                        dtype=dtype)

        self.denoiser = instantiate_from_config(denoiser_config)
        self.sampler = instantiate_from_config(
            sampler_config) if sampler_config is not None else None
        self.conditioner = instantiate_from_config(
            default(conditioner_config, UNCONDITIONAL_CONFIG))

        self._init_first_stage(first_stage_config)

        self.loss_fn = instantiate_from_config(
            loss_fn_config) if loss_fn_config is not None else None

        self.latent_input = latent_input
        self.scale_factor = scale_factor
        self.disable_first_stage_autocast = disable_first_stage_autocast
        self.no_cond_log = no_cond_log
        self.device = args.device

    def disable_untrainable_params(self):
        pass

    def reinit(self, parent_model=None):
        pass

    def _init_first_stage(self, config):
        model = instantiate_from_config(config).eval()
        model.train = disabled_train
        for param in model.parameters():
            param.requires_grad = False
        self.first_stage_model = model

    def get_input(self, batch):
        return batch[self.input_key].to(self.dtype)

    @torch.no_grad()
    def decode_first_stage(self, z):
        z = 1.0 / self.scale_factor * z
        n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
        n_rounds = math.ceil(z.shape[0] / n_samples)
        all_out = []
        with torch.autocast('cuda',
                            enabled=not self.disable_first_stage_autocast):
            for n in range(n_rounds):
                if isinstance(self.first_stage_model.decoder, VideoDecoder):
                    kwargs = {
                        'timesteps': len(z[n * n_samples:(n + 1) * n_samples])
                    }
                else:
                    kwargs = {}
                out = self.first_stage_model.decode(
                    z[n * n_samples:(n + 1) * n_samples], **kwargs)
                all_out.append(out)
        out = torch.cat(all_out, dim=0)
        return out

    @torch.no_grad()
    def encode_first_stage(self, x, batch):
        frame = x.shape[2]

        if frame > 1 and self.latent_input:
            x = x.permute(0, 2, 1, 3, 4).contiguous()
            return x * self.scale_factor  # already encoded

        n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0])
        n_rounds = math.ceil(x.shape[0] / n_samples)
        all_out = []
        with torch.autocast('cuda',
                            enabled=not self.disable_first_stage_autocast):
            for n in range(n_rounds):
                out = self.first_stage_model.encode(x[n * n_samples:(n + 1) *
                                                      n_samples])
                all_out.append(out)
        z = torch.cat(all_out, dim=0)
        z = self.scale_factor * z
        return z

    @torch.no_grad()
    def save_memory_encode_first_stage(self, x, batch):
        splits_x = torch.split(x, [13, 12, 12, 12], dim=2)

        all_out = []

        with torch.autocast('cuda', enabled=False):
            for idx, input_x in enumerate(splits_x):
                if idx == len(splits_x) - 1:
                    clear_fake_cp_cache = True
                else:
                    clear_fake_cp_cache = False
                out = self.first_stage_model.encode(
                    input_x.contiguous(),
                    clear_fake_cp_cache=clear_fake_cp_cache)
                all_out.append(out)

        z = torch.cat(all_out, dim=2)
        z = self.scale_factor * z
        return z

    def single_function_evaluation(self,
                                   t,
                                   x,
                                   cond=None,
                                   uc=None,
                                   cfg=1,
                                   **kwargs):
        start_time = time.time()
        # for CFG
        x = torch.cat([x] * 2)
        t = t.reshape(1).to(x.dtype).to(x.device)
        t = torch.cat([t] * 2)
        idx = 1000 - (t * 1000)

        real_cond = dict()
        for k, v in cond.items():
            uncond_v = uc[k]
            real_cond[k] = torch.cat([v, uncond_v])

        vt = self.model(x, t=idx, c=real_cond, idx=idx)
        vt, uc_vt = vt.chunk(2)
        vt = uc_vt + cfg * (vt - uc_vt)
        end_time = time.time()
        print(f'single_function_evaluation time at {t}', end_time - start_time)
        return vt

    @torch.no_grad()
    def sample(
        self,
        ref_x,
        cond,
        uc,
        **sample_kwargs,
    ):
        """Stage 2 Sampling, start from the first stage results `ref_x`

        Args:
            ref_x (_type_): Stage1 low resolution video
            cond (dict): Dict contains condtion embeddings
            uc (dict):  Dict contains  uncondition embedding

        Returns:
            Tensor: Secondary stage results
        """

        sample_kwargs = sample_kwargs or {}
        print('sample_kwargs', sample_kwargs)
        # timesteps
        num_steps = sample_kwargs.get('num_steps', 4)
        t = torch.linspace(0, 1, num_steps + 1,
                           dtype=ref_x.dtype).to(ref_x.device)
        print(self.share_cache['shift_t'])
        shift_t = float(self.share_cache['shift_t'])
        t = 1 - shift_t * (1 - t) / (1 + (shift_t - 1) * (1 - t))

        print('sample:', t)
        t = t
        single_function_evaluation = partial(self.single_function_evaluation,
                                             cond=cond,
                                             uc=uc,
                                             cfg=sample_kwargs.get('cfg', 1))

        ref_noise_step = self.share_cache['sample_ref_noise_step']
        print(f'ref_noise_step : {ref_noise_step}')

        ref_alphas_cumprod_sqrt = self.loss_fn.sigma_sampler.idx_to_sigma(
            torch.zeros(ref_x.shape[0]).fill_(ref_noise_step).long())
        ref_alphas_cumprod_sqrt = ref_alphas_cumprod_sqrt.to(ref_x.device)
        ori_dtype = ref_x.dtype

        ref_noise = torch.randn_like(ref_x)
        print('weight', ref_alphas_cumprod_sqrt, flush=True)

        ref_noised_input = ref_x * append_dims(ref_alphas_cumprod_sqrt, ref_x.ndim) \
                + ref_noise * append_dims(
        (1 - ref_alphas_cumprod_sqrt**2) ** 0.5, ref_x.ndim
        )
        ref_x = ref_noised_input.to(ori_dtype)
        self.share_cache['ref_x'] = ref_x

        results = odeint(single_function_evaluation,
                         ref_x,
                         t,
                         method=sample_kwargs.get('method', 'rk4'),
                         atol=1e-6,
                         rtol=1e-3)[-1]

        return results


class FlowVideoDiffusionLoss(StandardDiffusionLoss):

    def __init__(self,
                 block_scale=None,
                 block_size=None,
                 min_snr_value=None,
                 fixed_frames=0,
                 **kwargs):
        self.fixed_frames = fixed_frames
        self.block_scale = block_scale
        self.block_size = block_size
        self.min_snr_value = min_snr_value
        self.schedule = None
        super().__init__(**kwargs)

    def __call__(self, network, denoiser, conditioner, input, batch):
        pass