dit_res_adapter.py 15.4 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import copy
import random

import torch
from dit_video_concat import (DiffusionTransformer,
                              Rotary3DPositionEmbeddingMixin, broadcat,
                              rotate_half)
from einops import rearrange, repeat
from sgm.modules.diffusionmodules.util import timestep_embedding
from torch import nn

from sat.transformer_defaults import HOOKS_DEFAULT


class ScaleCropRotary3DPositionEmbeddingMixin(Rotary3DPositionEmbeddingMixin):

    def __init__(
        self,
        height,
        width,
        compressed_num_frames,
        hidden_size,
        hidden_size_head,
        text_length,
        theta=10000,
        h_interp_ratio=1.0,
        w_interp_ratio=1.0,
        t_interp_ratio=1.0,
        rot_v=False,
        learnable_pos_embed=False,
    ):
        super(Rotary3DPositionEmbeddingMixin, self).__init__()
        self.rot_v = rot_v
        print(f'theta is {theta}')
        dim_t = hidden_size_head // 4
        dim_h = hidden_size_head // 8 * 3
        dim_w = hidden_size_head // 8 * 3

        self.freqs_t = (1.0 / (theta**(
            torch.arange(0, dim_t, 2)[:(dim_t // 2)].float() / dim_t))).cuda()
        self.freqs_h = (1.0 / (theta**(
            torch.arange(0, dim_h, 2)[:(dim_h // 2)].float() / dim_h))).cuda()
        self.freqs_w = (1.0 / (theta**(
            torch.arange(0, dim_w, 2)[:(dim_w // 2)].float() / dim_w))).cuda()

        self.compressed_num_frames = compressed_num_frames
        self.height = height
        self.width = width
        self.text_length = text_length
        if learnable_pos_embed:
            num_patches = height * width * compressed_num_frames + text_length
            self.pos_embedding = nn.Parameter(torch.zeros(
                1, num_patches, int(hidden_size)),
                                              requires_grad=True)
        else:
            self.pos_embedding = None

    def online_sin_cos(self, real_t, real_h, real_w, dy_interpolation=None):

        grid_t = torch.arange(real_t, dtype=torch.float32, device='cuda')
        grid_h = torch.arange(real_h, dtype=torch.float32, device='cuda')
        grid_w = torch.arange(real_w, dtype=torch.float32, device='cuda')
        freqs_t = self.freqs_t
        freqs_h = self.freqs_h
        freqs_w = self.freqs_w

        freqs_t = torch.einsum('..., f -> ... f', grid_t, freqs_t)
        freqs_h = torch.einsum('..., f -> ... f', grid_h, freqs_h)
        freqs_w = torch.einsum('..., f -> ... f', grid_w, freqs_w)

        freqs_t = repeat(freqs_t, '... n -> ... (n r)', r=2)
        freqs_h = repeat(freqs_h, '... n -> ... (n r)', r=2)
        freqs_w = repeat(freqs_w, '... n -> ... (n r)', r=2)

        freqs = broadcat((freqs_t[:, None, None, :], freqs_h[None, :, None, :],
                          freqs_w[None, None, :, :]),
                         dim=-1)
        freqs = rearrange(freqs, 't h w d -> (t h w) d')

        temp_layer_id = self.share_cache['temp_layer_id']
        emb = self.share_cache['emb']
        if f'rope_layer_{temp_layer_id}' in self.share_cache:
            m = self.share_cache[f'rope_layer_{temp_layer_id}']

            dy_interpolation = m(emb)
        else:
            dy_interpolation = freqs.new_ones(emb.shape[0], freqs.shape[-1])

        b, dim = dy_interpolation.shape
        dy_interpolation = dy_interpolation[:, None]
        freqs = freqs[None]
        freqs = freqs.repeat(b, 1, 1)
        if dy_interpolation.shape[-1] != freqs.shape[-1]:
            freqs[...,-dy_interpolation.shape[-1]:] =  \
                freqs[...,-dy_interpolation.shape[-1]:] * dy_interpolation

        else:
            freqs = freqs * dy_interpolation

        freqs_sin = torch.sin(freqs)
        freqs_cos = torch.cos(freqs)

        return freqs_cos, freqs_sin

    def rotary(self, t, **kwargs):
        if 'freqs_cos' in self.share_cache:
            freqs_cos = self.share_cache['freqs_cos']
            freqs_sin = self.share_cache['freqs_sin']
        else:
            real_t, real_h, real_w = self.share_cache['shape_info']
            freqs_cos, freqs_sin = self.online_sin_cos(real_t,
                                                       real_h,
                                                       real_w,
                                                       dy_interpolation=None)
            freqs_cos = freqs_cos.unsqueeze(1)
            freqs_cos = freqs_cos.to(t.dtype)
            freqs_sin = freqs_sin.unsqueeze(1)
            freqs_sin = freqs_sin.to(t.dtype)
            self.share_cache['freqs_cos'] = freqs_cos
            self.share_cache['freqs_sin'] = freqs_sin

        return t * freqs_cos + rotate_half(t) * freqs_sin

    def attention_fn(
        self,
        query_layer,
        key_layer,
        value_layer,
        attention_mask,
        attention_dropout=None,
        log_attention_weights=None,
        scaling_attention_score=True,
        **kwargs,
    ):
        attention_fn_default = HOOKS_DEFAULT['attention_fn']

        img_query_layer = self.rotary(query_layer[:, :, self.text_length:])
        query_layer = torch.cat(
            [query_layer[:, :, :self.text_length], img_query_layer], dim=2)
        query_layer = query_layer.to(value_layer.dtype)
        img_key_layer = self.rotary(key_layer[:, :, self.text_length:])
        key_layer = torch.cat(
            [key_layer[:, :, :self.text_length], img_key_layer], dim=2)
        key_layer = key_layer.to(value_layer.dtype)

        if self.rot_v:
            value_layer[:, :, self.text_length:] = self.rotary(
                value_layer[:, :, self.text_length:])

        return attention_fn_default(
            query_layer,
            key_layer,
            value_layer,
            attention_mask,
            attention_dropout=attention_dropout,
            log_attention_weights=log_attention_weights,
            scaling_attention_score=scaling_attention_score,
            **kwargs,
        )


from sat.model.finetune.lora2 import *


class ResLoraMixin(LoraMixin):

    def reinit(self, parent_model):
        for i in self.layer_range:
            print_rank0(f'replacing layer {i} attention with lora')
            parent_model.transformer.layers[
                i].attention.dense = replace_linear_with_lora(
                    parent_model.transformer.layers[i].attention.dense,
                    1,
                    self.r,
                    self.lora_alpha,
                    self.lora_dropout,
                    qlora=self.qlora,
                    in_size=parent_model.transformer.hidden_size,
                    out_size=None)
            parent_model.transformer.layers[
                i].attention.query_key_value = replace_linear_with_lora(
                    parent_model.transformer.layers[i].attention.
                    query_key_value,
                    parent_model.transformer.layers[i].attention.stride,
                    self.r,
                    self.lora_alpha,
                    self.lora_dropout,
                    qlora=self.qlora,
                    in_size=parent_model.transformer.hidden_size,
                    out_size=None
                    if not parent_model.transformer.num_multi_query_heads else
                    parent_model.transformer.layers[i].attention.
                    inner_hidden_size + parent_model.transformer.layers[i].
                    attention.hidden_size_per_attention_head * parent_model.
                    transformer.layers[i].attention.num_multi_query_heads * 2)
            if self.cross_attention and parent_model.transformer.layers[
                    i].is_decoder:
                print_rank0(f'replacing layer {i} cross attention with lora')
                kv_size = parent_model.transformer.layers[
                    i].cross_attention.inner_hidden_size * 2 if not parent_model.transformer.cross_num_multi_query_heads else parent_model.transformer.layers[
                        i].cross_attention.hidden_size_per_attention_head * parent_model.transformer.layers[
                            i].cross_attention.cross_num_multi_query_heads * 2
                parent_model.transformer.layers[
                    i].cross_attention.dense = replace_linear_with_lora(
                        parent_model.transformer.layers[i].cross_attention.
                        dense,
                        1,
                        self.r,
                        self.lora_alpha,
                        self.lora_dropout,
                        qlora=self.qlora,
                        in_size=parent_model.transformer.layers[i].
                        cross_attention.inner_hidden_size,
                        out_size=parent_model.transformer.hidden_size)
                parent_model.transformer.layers[
                    i].cross_attention.query = replace_linear_with_lora(
                        parent_model.transformer.layers[i].cross_attention.
                        query,
                        1,
                        self.r,
                        self.lora_alpha,
                        self.lora_dropout,
                        qlora=self.qlora,
                        in_size=parent_model.transformer.hidden_size,
                        out_size=parent_model.transformer.layers[i].
                        cross_attention.inner_hidden_size)
                parent_model.transformer.layers[
                    i].cross_attention.key_value = replace_linear_with_lora(
                        parent_model.transformer.layers[i].cross_attention.
                        key_value,
                        2,
                        self.r,
                        self.lora_alpha,
                        self.lora_dropout,
                        qlora=self.qlora,
                        in_size=parent_model.transformer.layers[i].
                        cross_attention.cross_attn_hidden_size,
                        out_size=kv_size)

        for m in parent_model.mixins.adaln_layer.adaLN_modulations:
            m[1] = replace_linear_with_lora(m[1],
                                            1,
                                            self.r,
                                            self.lora_alpha,
                                            self.lora_dropout,
                                            qlora=self.qlora,
                                            in_size=512,
                                            out_size=36864)

    def merge_lora(self):
        for i in self.layer_range:
            print_rank0(f'merge layer {i} lora attention back to linear')
            self.transformer.layers[i].attention.dense = merge_linear_lora(
                self.transformer.layers[i].attention.dense)
            self.transformer.layers[
                i].attention.query_key_value = merge_linear_lora(
                    self.transformer.layers[i].attention.query_key_value)
            if self.cross_attention and self.transformer.layers[i].is_decoder:
                print_rank0(
                    f'merge layer {i} lora cross attention back to linear')
                self.transformer.layers[
                    i].cross_attention.dense = merge_linear_lora(
                        self.transformer.layers[i].cross_attention.dense)
                self.transformer.layers[
                    i].cross_attention.query = merge_linear_lora(
                        self.transformer.layers[i].cross_attention.query)
                self.transformer.layers[
                    i].cross_attention.key_value = merge_linear_lora(
                        self.transformer.layers[i].cross_attention.key_value)


class SMALLDiffusionTransformer(DiffusionTransformer):

    def register_new_modules(self):

        if 'sample_ref_noise_step' in self.share_cache:
            self.ref_step_time_embedding = copy.deepcopy(self.time_embed)
            # zero init last linear in the self.ref_step_time_embedding
            for n, p in self.ref_step_time_embedding[-1].named_parameters():
                nn.init.constant_(p, 0)
                p.requires_grad = True
        if 'time_size_embedding' in self.share_cache:
            self.time_size_embedding = copy.deepcopy(self.time_embed)

            # zero init the fuse linear
            for n, p in self.time_size_embedding.named_parameters():
                nn.init.constant_(p, 0)
                p.requires_grad = True

    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        b, t, d, h, w = x.shape

        if x.dtype != self.dtype:
            x = x.to(self.dtype)
        if 'ref_x' in self.share_cache:
            ref_x = self.share_cache['ref_x']
            if ref_x.dtype != self.dtype:
                ref_x = ref_x.to(self.dtype)
            self.share_cache['ref_x'] = ref_x
        # This is not use in inference
        if 'concat_images' in kwargs and kwargs['concat_images'] is not None:
            if kwargs['concat_images'].shape[0] != x.shape[0]:
                concat_images = kwargs['concat_images'].repeat(2, 1, 1, 1, 1)
            else:
                concat_images = kwargs['concat_images']
            x = torch.cat([x, concat_images], dim=2)

        assert (y is not None) == (
            self.num_classes is not None
        ), 'must specify y if and only if the model is class-conditional'
        t_emb = timestep_embedding(timesteps,
                                   self.model_channels,
                                   repeat_only=False,
                                   dtype=self.dtype)
        emb = self.time_embed(t_emb)

        if 'time_size_embedding' in self.share_cache:
            num_t = torch.zeros_like(timesteps).fill_(int(t))
            time_size_emb = timestep_embedding(num_t,
                                               self.model_channels,
                                               repeat_only=False,
                                               dtype=self.dtype)
            time_size_emb = self.time_size_embedding(time_size_emb)
            emb = emb + time_size_emb

        if 'sample_ref_noise_step' in self.share_cache:
            print(
                f'''sample_ref_noise_step {self.share_cache["sample_ref_noise_step"]}'''
            )
            # bf 16
            ref_time_step = copy.deepcopy(timesteps).fill_(
                self.share_cache['sample_ref_noise_step'])
            ref_step_time_emb = timestep_embedding(ref_time_step,
                                                   self.model_channels,
                                                   repeat_only=False,
                                                   dtype=self.dtype)
            ref_step_time_emb = self.ref_step_time_embedding(ref_step_time_emb)
            if not self.training:
                print(f'{ref_time_step} get {ref_step_time_emb.sum()}')
            emb = emb + ref_step_time_emb

        if self.num_classes is not None:
            assert x.shape[0] % y.shape[0] == 0
            y = y.repeat_interleave(x.shape[0] // y.shape[0], dim=0)
            emb = emb + self.label_emb(y)

        self.share_cache['shape_info'] = (t, h // (self.patch_size),
                                          w // (self.patch_size))
        self.share_cache['timesteps'] = int(timesteps[0])
        self.share_cache['emb'] = emb

        kwargs['seq_length'] = t * h * w // (self.patch_size**2)
        kwargs['images'] = x
        kwargs['emb'] = emb
        kwargs['encoder_outputs'] = context
        kwargs['text_length'] = context.shape[1]

        kwargs['input_ids'] = kwargs['position_ids'] = kwargs[
            'attention_mask'] = torch.ones((1, 1)).to(x.dtype)
        output = super(DiffusionTransformer, self).forward(**kwargs)[0]
        return output