base_transformer.py 18 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# rewritten, Copyright (c) 2021, Ming Ding.  All rights reserved.
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer."""

import copy
import math

import torch
import torch.nn.functional as F
from deepspeed.runtime.activation_checkpointing.checkpointing import \
    non_reentrant_checkpoint as checkpoint

from sat import mpu
from sat.model.transformer import BaseTransformerLayer
from sat.mpu import (ColumnParallelLinear, RowParallelLinear,
                     VocabParallelEmbedding, copy_to_model_parallel_region,
                     gather_from_model_parallel_region,
                     get_model_parallel_world_size)
from sat.mpu.utils import (divide, gelu, scaled_init_method, sqrt,
                           unscaled_init_method)
from sat.ops.layernorm import LayerNorm
from sat.transformer_defaults import (HOOKS_DEFAULT,
                                      split_tensor_along_last_dim,
                                      standard_attention)

# checkpoint


class GCBaseTransformer(torch.nn.Module):

    def __init__(self,
                 num_layers,
                 vocab_size,
                 hidden_size,
                 num_attention_heads,
                 max_sequence_length,
                 embedding_dropout_prob=0,
                 attention_dropout_prob=0,
                 output_dropout_prob=0,
                 drop_path=0,
                 checkpoint_activations=False,
                 checkpoint_num_layers=1,
                 checkpoint_skip_layers=0,
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 inner_hidden_size=None,
                 hidden_size_per_attention_head=None,
                 cross_hidden_size_per_attention_head=None,
                 layernorm_order='pre',
                 parallel_output=False,
                 is_decoder=False,
                 cross_attn_hidden_size=None,
                 use_bias=True,
                 use_qkv_bias=False,
                 num_multi_query_heads=0,
                 cross_num_multi_query_heads=0,
                 row_parallel_linear_final_bias=True,
                 activation_func=gelu,
                 is_gated_mlp=False,
                 is_rotary_emb=False,
                 num_experts=1,
                 layernorm=LayerNorm,
                 init_method=None,
                 use_final_layernorm=True,
                 hooks={},
                 params_dtype=torch.float,
                 skip_init=False,
                 device=torch.device('cpu')):
        super().__init__()

        # recording parameters
        self.hidden_size = hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.hidden_size_per_attention_head = hidden_size_per_attention_head
        self.cross_hidden_size_per_attention_head = cross_hidden_size_per_attention_head
        self.is_decoder = is_decoder
        self.cross_attn_hidden_size = cross_attn_hidden_size
        self.cross_num_multi_query_heads = cross_num_multi_query_heads
        if not is_decoder and cross_attn_hidden_size is not None:
            print(
                'warning: cross_attn_hidden_size is set but is_decoder is False'
            )
        self.use_bias = use_bias
        self.use_qkv_bias = use_qkv_bias
        self.num_multi_query_heads = num_multi_query_heads
        self.is_gated_mlp = is_gated_mlp
        self.is_rotary_emb = is_rotary_emb
        self.num_experts = num_experts
        self.use_final_layernorm = use_final_layernorm
        self.layernorm_epsilon = layernorm_epsilon
        self.parallel_output = parallel_output
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_num_layers = checkpoint_num_layers
        self.checkpoint_skip_layers = checkpoint_skip_layers
        assert checkpoint_skip_layers <= num_layers - checkpoint_num_layers, f'checkpoint_skip_layers too large. Please consider remove checkpoint_activations.'
        self.max_sequence_length = max_sequence_length
        self.layernorm_order = layernorm_order
        self.row_parallel_linear_final_bias = row_parallel_linear_final_bias
        self.hooks = copy.copy(hooks)  # hooks will be updated each forward
        object.__setattr__(
            self, 'transformer',
            self)  # to give the default hooks the same api as outer hooks

        # create embedding parameters
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

        if vocab_size < 1000:
            self.word_embeddings = torch.nn.Embedding(vocab_size,
                                                      hidden_size,
                                                      dtype=params_dtype,
                                                      device=device)
            torch.nn.init.normal_(self.word_embeddings.weight,
                                  mean=0.0,
                                  std=init_method_std)
        else:
            self.word_embeddings = VocabParallelEmbedding(
                num_embeddings=vocab_size,
                embedding_dim=hidden_size,
                params_dtype=params_dtype,
                skip_init=skip_init,
                device=device)

        if self.is_rotary_emb:
            from sat.model.position_embedding.triton_rotary_embeddings import \
                FastRotaryEmbedding
            self.position_embeddings = FastRotaryEmbedding(hidden_size //
                                                           num_attention_heads)
        else:
            self.position_embeddings = torch.nn.Embedding(
                max_sequence_length, hidden_size)
            torch.nn.init.normal_(self.position_embeddings.weight,
                                  mean=0.0,
                                  std=init_method_std)

        # create all layers
        if init_method is None:
            self.output_layer_init_method = scaled_init_method(
                init_method_std, num_layers)
            self.init_method = unscaled_init_method(init_method_std)
        else:
            self.output_layer_init_method = init_method
            self.init_method = init_method

        def get_layer(layer_id):
            return BaseTransformerLayer(
                hidden_size,
                num_attention_heads,
                attention_dropout_prob,
                output_dropout_prob,
                layernorm_epsilon,
                self.init_method,
                layer_id,
                inner_hidden_size=inner_hidden_size,
                hidden_size_per_attention_head=hidden_size_per_attention_head,
                cross_hidden_size_per_attention_head=
                cross_hidden_size_per_attention_head,
                output_layer_init_method=self.output_layer_init_method,
                is_decoder=self.is_decoder,
                cross_attn_hidden_size=cross_attn_hidden_size,
                layernorm_order=layernorm_order,
                layernorm=layernorm,
                use_bias=use_bias,
                use_qkv_bias=use_qkv_bias,
                num_multi_query_heads=num_multi_query_heads,
                cross_num_multi_query_heads=cross_num_multi_query_heads,
                row_parallel_linear_final_bias=row_parallel_linear_final_bias,
                drop_path=drop_path,
                activation_func=activation_func,
                is_gated_mlp=is_gated_mlp,
                num_experts=num_experts,
                hooks=self.hooks,
                transformer_pointer=self,
                params_dtype=params_dtype,
                skip_init=skip_init,
                device=device)

        self.layers = torch.nn.ModuleList(
            [get_layer(layer_id) for layer_id in range(num_layers)])

        # Final layer norm before output.
        if use_final_layernorm:
            self.final_layernorm = layernorm(hidden_size,
                                             eps=layernorm_epsilon)

    def forward(self,
                input_ids,
                position_ids,
                attention_mask,
                *,
                output_hidden_states=False,
                **kw_args):
        # sanity check
        assert len(input_ids.shape) >= 2
        batch_size, query_length = input_ids.shape[:2]

        if attention_mask is None:
            # Definition: None means full attention
            attention_mask = torch.ones(1, 1, device=input_ids.device)
        elif isinstance(attention_mask, int) and (attention_mask < 0):
            # Definition: -1 means lower triangular attention mask
            attention_mask = torch.ones(query_length,
                                        query_length,
                                        device=input_ids.device).tril()

        attention_mask = attention_mask.type_as(next(self.parameters()))
        assert len(attention_mask.shape) == 2 or \
               len(attention_mask.shape) == 4 and attention_mask.shape[1] == 1

        # initial output_cross_layer might be generated by word/position_embedding_forward
        output_cross_layer = {}

        # embedding part
        if 'word_embedding_forward' in self.hooks:
            hidden_states = self.hooks['word_embedding_forward'](
                input_ids, output_cross_layer=output_cross_layer, **kw_args)
        else:  # default
            hidden_states = HOOKS_DEFAULT['word_embedding_forward'](
                self,
                input_ids,
                output_cross_layer=output_cross_layer,
                **kw_args)

        # handle position embedding
        if 'position_embedding_forward' in self.hooks:
            position_embeddings = self.hooks['position_embedding_forward'](
                position_ids, output_cross_layer=output_cross_layer, **kw_args)
        else:
            assert len(position_ids.shape) <= 2
            assert position_ids.shape[-1] == hidden_states.shape[1], (
                position_ids.shape, hidden_states.shape)
            position_embeddings = HOOKS_DEFAULT['position_embedding_forward'](
                self,
                position_ids,
                output_cross_layer=output_cross_layer,
                **kw_args)
        if position_embeddings is not None:
            hidden_states = hidden_states + position_embeddings
        hidden_states = self.embedding_dropout(hidden_states)

        output_per_layers = []
        if self.checkpoint_activations:
            # define custom_forward for checkpointing
            def custom(start, end, kw_args_index, cross_layer_index):

                def custom_forward(*inputs):
                    layers_ = self.layers[start:end]
                    x_, mask = inputs[0], inputs[1]

                    # recover kw_args and output_cross_layer
                    flat_inputs = inputs[2:]
                    kw_args, output_cross_layer = {}, {}
                    for k, idx in kw_args_index.items():
                        kw_args[k] = flat_inputs[idx]
                    for k, idx in cross_layer_index.items():
                        output_cross_layer[k] = flat_inputs[idx]
                    # -----------------

                    output_per_layers_part = []
                    for i, layer in enumerate(layers_):
                        output_this_layer_obj, output_cross_layer_obj = {}, {}
                        if 'layer_forward' in self.hooks:
                            layer_ret = self.hooks['layer_forward'](
                                x_,
                                mask,
                                layer_id=layer.layer_id,
                                **kw_args,
                                position_ids=position_ids,
                                **output_cross_layer,
                                output_this_layer=output_this_layer_obj,
                                output_cross_layer=output_cross_layer_obj)
                        else:
                            layer_ret = layer(
                                x_,
                                mask,
                                layer_id=layer.layer_id,
                                **kw_args,
                                position_ids=position_ids,
                                **output_cross_layer,
                                output_this_layer=output_this_layer_obj,
                                output_cross_layer=output_cross_layer_obj)
                        if isinstance(layer_ret, tuple):
                            layer_ret = layer_ret[0]  # for legacy API
                        x_, output_this_layer, output_cross_layer = layer_ret, output_this_layer_obj, output_cross_layer_obj
                        if output_hidden_states:
                            output_this_layer['hidden_states'] = x_
                        output_per_layers_part.append(output_this_layer)

                    # flatten for re-aggregate keywords outputs
                    flat_outputs = []
                    for output_this_layer in output_per_layers_part:
                        for k in output_this_layer:
                            # TODO add warning for depth>=2 grad tensors
                            flat_outputs.append(output_this_layer[k])
                            output_this_layer[k] = len(flat_outputs) - 1
                    for k in output_cross_layer:
                        flat_outputs.append(output_cross_layer[k])
                        output_cross_layer[k] = len(flat_outputs) - 1
                    # --------------------

                    return (x_, output_per_layers_part, output_cross_layer,
                            *flat_outputs)

                return custom_forward

            # prevent to lose requires_grad in checkpointing.
            # To save memory when only finetuning the final layers, don't use checkpointing.
            if self.training:
                hidden_states.requires_grad_(True)

            l, num_layers = 0, len(self.layers)
            chunk_length = self.checkpoint_num_layers
            output_this_layer = []
            while l < num_layers:
                args = [hidden_states, attention_mask]
                # flatten kw_args and output_cross_layer
                flat_inputs, kw_args_index, cross_layer_index = [], {}, {}
                for k, v in kw_args.items():
                    flat_inputs.append(v)
                    kw_args_index[k] = len(flat_inputs) - 1
                for k, v in output_cross_layer.items():
                    flat_inputs.append(v)
                    cross_layer_index[k] = len(flat_inputs) - 1
                # --------------------
                if l + self.checkpoint_skip_layers >= num_layers:
                    # no checkpointing
                    hidden_states, output_per_layers_part, output_cross_layer, *flat_outputs = \
                    custom(l, l + chunk_length, kw_args_index, cross_layer_index)(*args, *flat_inputs)
                else:
                    hidden_states, output_per_layers_part, output_cross_layer, *flat_outputs = \
                    checkpoint(custom(l, l + chunk_length, kw_args_index, cross_layer_index), *args, *flat_inputs)

                # recover output_per_layers_part, output_cross_layer
                for output_this_layer in output_per_layers_part:
                    for k in output_this_layer:
                        output_this_layer[k] = flat_outputs[
                            output_this_layer[k]]
                for k in output_cross_layer:
                    output_cross_layer[k] = flat_outputs[output_cross_layer[k]]
                # --------------------

                output_per_layers.extend(output_per_layers_part)
                l += chunk_length
        else:
            output_this_layer = []
            for i, layer in enumerate(self.layers):
                args = [hidden_states, attention_mask]

                output_this_layer_obj, output_cross_layer_obj = {}, {}

                if 'layer_forward' in self.hooks:  # customized layer_forward
                    layer_ret = self.hooks['layer_forward'](
                        *args,
                        layer_id=torch.tensor(i),
                        **kw_args,
                        position_ids=position_ids,
                        **output_cross_layer,
                        output_this_layer=output_this_layer_obj,
                        output_cross_layer=output_cross_layer_obj)
                else:
                    layer_ret = layer(
                        *args,
                        layer_id=torch.tensor(i),
                        **kw_args,
                        position_ids=position_ids,
                        **output_cross_layer,
                        output_this_layer=output_this_layer_obj,
                        output_cross_layer=output_cross_layer_obj)
                if isinstance(layer_ret, tuple):
                    layer_ret = layer_ret[0]  # for legacy API
                hidden_states, output_this_layer, output_cross_layer = layer_ret, output_this_layer_obj, output_cross_layer_obj

                if output_hidden_states:
                    output_this_layer['hidden_states'] = hidden_states
                output_per_layers.append(output_this_layer)

        # Final layer norm.
        if self.use_final_layernorm:
            logits = self.final_layernorm(hidden_states)
        else:
            logits = hidden_states

        logits = copy_to_model_parallel_region(logits)
        if 'final_forward' in self.hooks:
            logits_parallel = self.hooks['final_forward'](
                logits, **kw_args, parallel_output=self.parallel_output)
        else:
            logits_parallel = HOOKS_DEFAULT['final_forward'](
                self, logits, **kw_args, parallel_output=self.parallel_output)

        outputs = [logits_parallel]
        outputs.extend(output_per_layers)

        return outputs