pipeline.py 6.05 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

import os
from tqdm import tqdm
from PIL import Image
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from typing import Union, List, Optional

import torch
from direct3d.utils import instantiate_from_config, preprocess
from diffusers.utils.torch_utils import randn_tensor


class Direct3dPipeline(object):

    def __init__(self, 
                 vae, 
                 dit,
                 semantic_encoder,
                 pixel_encoder,
                 scheduler):
        self.vae = vae
        self.dit = dit
        self.semantic_encoder = semantic_encoder
        self.pixel_encoder = pixel_encoder
        self.scheduler = scheduler
    
    def to(self, device):
        self.device = torch.device(device)
        self.vae.to(device)
        self.dit.to(device)
        self.semantic_encoder.to(device)
        self.pixel_encoder.to(device)

    @classmethod
    def from_pretrained(cls, 
                        pipeline_path):
        
        if os.path.isdir(pipeline_path):
            config_path = os.path.join(pipeline_path, 'config.yaml')
            model_path = os.path.join(pipeline_path, 'model.ckpt')
        else:
            config_path = hf_hub_download(repo_id=pipeline_path, filename="config.yaml", repo_type="model")
            model_path = hf_hub_download(repo_id=pipeline_path, filename="model.ckpt", repo_type="model")
        
        cfg = OmegaConf.load(config_path)
        state_dict = torch.load(model_path, map_location='cpu')

        vae = instantiate_from_config(cfg.vae)
        vae.load_state_dict(state_dict["vae"], strict=True)
        dit = instantiate_from_config(cfg.dit)
        dit.load_state_dict(state_dict["dit"], strict=True)

        semantic_encoder = instantiate_from_config(cfg.semantic_encoder)
        pixel_encoder = instantiate_from_config(cfg.pixel_encoder)

        scheduler = instantiate_from_config(cfg.scheduler)

        return cls(
            vae=vae, 
            dit=dit, 
            semantic_encoder=semantic_encoder, 
            pixel_encoder=pixel_encoder, 
            scheduler=scheduler)

    def prepare_image(self, image: Union[str, List[str], Image.Image, List[Image.Image]], rmbg: bool = True):
        if not isinstance(image, list):
            image = [image]
        if isinstance(image[0], str):
            image = [Image.open(img) for img in image]
        image = [preprocess(img, rmbg=rmbg) for img in image]
        image = torch.stack([img for img in image]).to(self.device)
        return image
    
    def encode_image(self, image: torch.Tensor, do_classifier_free_guidance: bool = True):
        semantic_cond = self.semantic_encoder(image)
        pixel_cond = self.pixel_encoder(image)
        if do_classifier_free_guidance:
            semantic_uncond = torch.zeros_like(semantic_cond)
            pixel_uncond = torch.zeros_like(pixel_cond)
            semantic_cond = torch.cat([semantic_uncond, semantic_cond], dim=0)
            pixel_cond = torch.cat([pixel_uncond, pixel_cond], dim=0)

        return semantic_cond, pixel_cond
    
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator):
        shape = (
            batch_size,
            num_channels_latents,
            height,
            width,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        return latents
    
    @torch.no_grad()
    def __call__(
        self,
        image: Union[str, List[str], Image.Image, List[Image.Image]] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 4.0,
        generator: Optional[torch.Generator] = None,
        mc_threshold: float = -2.0,
        remove_background: bool = True,):

        batch_size = len(image) if isinstance(image, list) else 1
        do_classifier_free_guidance = guidance_scale > 0

        self.scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.scheduler.timesteps

        image = self.prepare_image(image, remove_background)
        semantic_cond, pixel_cond = self.encode_image(image, do_classifier_free_guidance)
        latents = self.prepare_latents(
            batch_size=batch_size,
            num_channels_latents=self.vae.latent_shape[0],
            height=self.vae.latent_shape[1],
            width=self.vae.latent_shape[2],
            dtype=image.dtype,
            device=self.device,
            generator=generator,
        )

        extra_step_kwargs = {
            "generator": generator
        }

        for i, t in enumerate(tqdm(timesteps, desc="Diffusion Sampling:")):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            t = t.expand(latent_model_input.shape[0])

            noise_pred = self.dit(
                hidden_states=latent_model_input,
                timestep=t,
                encoder_hidden_states=semantic_cond,
                pixel_hidden_states=pixel_cond,
            )

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
            
        latents = 1. / self.vae.latents_scale * latents + self.vae.latents_shift
        meshes = self.vae.decode_mesh(latents, mc_threshold=mc_threshold)
        outputs = {"meshes": meshes, "latents": latents}

        return outputs