Commit 9cd9f890 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #2393 failed with stages
in 0 seconds
# https://editorconfig.org/
root = true
[*]
charset = utf-8
end_of_line = lf
indent_style = space
indent_size = 4
trim_trailing_whitespace = true
insert_final_newline = true
[*.py]
indent_size = 4
src_paths=evaluation
[*.{yaml,yml,json}]
indent_size = 2
[*.md]
indent_size = 2
x-soft-wrap-text = true
[*.rst]
indent_size = 4
x-soft-wrap-text = true
[*.{bib,tex}]
indent_size = 2
[Makefile]
indent_style = tab
[*.sh]
indent_style = tab
[*.bat]
end_of_line = crlf
indent_style = tab
[*.{cpp,h,cu,cuh}]
indent_size = 2
[flake8]
max-line-length = 120
max-doc-length = 100
select = B,C,E,F,W,Y,SIM
ignore =
# E203: whitespace before ':'
# W503: line break before binary operator
# W504: line break after binary operator
# format by black
E203,W503,W504,
# E501: line too long
# W505: doc line too long
# too long docstring due to long example blocks
E501,W505,
per-file-ignores =
# F401: module imported but unused
# intentionally unused imports
__init__.py: F401
# F401: module imported but unused
# F403: unable to detect undefined names
# F405: member mey be undefined, or defined from star imports
# members populated from optree
# E301: expected 1 blank line
# E302: expected 2 blank lines
# E305: expected 2 blank lines after class or function definition
# E701: multiple statements on one line (colon)
# E704: multiple statements on one line (def)
# format by black
*.pyi: E301,E302,E305,E701,E704
exclude =
.git,
.vscode,
venv,
third-party,
__pycache__,
docs/source/conf.py,
build,
dist,
examples,
tests
* text eol=lf
*.ipynb linguist-detectable=false
*.png binary
*.jpg binary
*.jpeg binary
*.gif binary
*.pdf binary
*.ttc binary
##### Python.gitignore #####
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
wheelhouse/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
*.whl
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/source/_build/
_autosummary/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# ruff
.ruff_cache/
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
##### macOS.gitignore #####
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
##### Linux.gitignore #####
*~
# Temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*
# KDE directory preferences
.directory
# Linux trash folder which might appear on any partition or disk
.Trash-*
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
##### Windows.gitignore #####
# Windows thumbnail cache files
Thumbs.db
Thumbs.db:encryptable
ehthumbs.db
ehthumbs_vista.db
# Dump file
*.stackdump
# Folder config file
[Dd]esktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Windows Installer files
*.cab
*.msi
*.msix
*.msm
*.msp
# Windows shortcuts
*.lnk
##### Archives.gitignore #####
# It's better to unpack these files and commit the raw source because
# git has its own built in compression methods.
*.7z
*.jar
*.rar
*.zip
*.gz
*.gzip
*.tgz
*.bzip
*.bzip2
*.bz2
*.xz
*.lzma
*.cab
*.xar
# Packing-only formats
*.iso
*.tar
# Package management formats
*.dmg
*.xpi
*.gem
*.egg
*.deb
*.rpm
*.msi
*.msm
*.msp
*.txz
##### Xcode.gitignore #####
# Xcode
#
# gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
## User settings
xcuserdata/
## Compatibility with Xcode 8 and earlier (ignoring not required starting Xcode 9)
*.xcscmblueprint
*.xccheckout
## Compatibility with Xcode 3 and earlier (ignoring not required starting Xcode 4)
build/
DerivedData/
*.moved-aside
*.pbxuser
!default.pbxuser
*.mode1v3
!default.mode1v3
*.mode2v3
!default.mode2v3
*.perspectivev3
!default.perspectivev3
## Gcc Patch
/*.gcno
##### JetBrains.gitignore #####
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User settings
.idea/*
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
##### VisualStudioCode.gitignore #####
.vscode/*
# !.vscode/settings.json
# !.vscode/tasks.json
# !.vscode/launch.json
!.vscode/extensions.json
*.code-workspace
# Local History for Visual Studio Code
.history/
##### Vim.gitignore #####
# Swap
.*.s[a-v][a-z]
!*.svg # comment out if you don't need vector files
.*.sw[a-p]
.s[a-rt-v][a-z]
.ss[a-gi-z]
.sw[a-p]
# Session
Session.vim
Sessionx.vim
# Temporary
.netrwhist
*~
# Auto-generated tag files
tags
# Persistent undo
[._]*.un~
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
ci:
skip: [pylint]
autofix_prs: true
autofix_commit_msg: "fix: [pre-commit.ci] auto fixes [...]"
autoupdate_commit_msg: "chore(pre-commit): [pre-commit.ci] autoupdate"
autoupdate_schedule: monthly
default_stages: [commit, push, manual]
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-symlinks
- id: destroyed-symlinks
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-toml
- id: check-ast
- id: check-added-large-files
- id: check-merge-conflict
- id: check-executables-have-shebangs
- id: check-shebang-scripts-are-executable
- id: detect-private-key
- id: debug-statements
- id: double-quote-string-fixer
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.5
hooks:
- id: ruff
args: [--fix, --exit-non-zero-on-fix]
- repo: https://github.com/PyCQA/isort
rev: 5.12.0
hooks:
- id: isort
- repo: https://github.com/psf/black
rev: 23.11.0
hooks:
- id: black-jupyter
- repo: https://github.com/asottile/pyupgrade
rev: v3.15.0
hooks:
- id: pyupgrade
args: [--py38-plus] # sync with requires-python
exclude: |
(?x)(
^images/
)
- repo: https://github.com/pycqa/flake8
rev: 6.1.0
hooks:
- id: flake8
additional_dependencies:
- flake8-bugbear
- flake8-comprehensions
- flake8-docstrings
- flake8-pyi
- flake8-simplify
exclude: |
(?x)(
^images/
)
- repo: local
hooks:
- id: pylint
name: pylint
entry: pylint
language: system
types: [python]
require_serial: true
exclude: |
(?x)(
^images/
)
This diff is collapsed.
File suppressed by a .gitattributes entry or the file's encoding is unsupported.
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-py3.10-dtk24.04.3-ubuntu20.04
MIT License
Copyright (c) 2023 DeepSeek
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
DEEPSEEK LICENSE AGREEMENT
Version 1.0, 23 October 2023
Copyright (c) 2023 DeepSeek
Section I: PREAMBLE
Large generative models are being widely adopted and used, and have the potential to transform the way individuals conceive and benefit from AI or ML technologies.
Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for content generation.
Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this agreement aims to strike a balance between both in order to enable responsible open-science in the field of AI.
This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
NOW THEREFORE, You and DeepSeek agree as follows:
1. Definitions
"License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
"Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
"Output" means the results of operating a Model as embodied in informational content resulting therefrom.
"Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
"Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
"Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
"Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
"DeepSeek" (or "we") means Beijing DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd., Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. and/or any of their affiliates.
"You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, etc.
"Third Parties" means individuals or legal entities that are not under common control with DeepSeek or You.
Section II: INTELLECTUAL PROPERTY RIGHTS
Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
2. Grant of Copyright License. Subject to the terms and conditions of this License, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by DeepSeek that are necessarily infringed by its contribution(s). If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or works shall terminate as of the date such litigation is asserted or filed.
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
a. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
b. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
c. You must cause any modified files to carry prominent notices stating that You changed the files;
d. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
e. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
6. The Output You Generate. Except as set forth herein, DeepSeek claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
Section IV: OTHER PROVISIONS
7. Updates and Runtime Restrictions. To the maximum extent permitted by law, DeepSeek reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License.
8. Trademarks and related. Nothing in this License permits You to make use of DeepSeek’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by DeepSeek.
9. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that DeepSeek's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
10. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, DeepSeek provides the Model and the Complementary Material on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
11. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall DeepSeek be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if DeepSeek has been advised of the possibility of such damages.
12. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of DeepSeek, and only if You agree to indemnify, defend, and hold DeepSeek harmless for any liability incurred by, or claims asserted against, DeepSeek by reason of your accepting any such warranty or additional liability.
13. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
14. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The courts located in the domicile of Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. shall have exclusive jurisdiction of any dispute arising out of this agreement.
END OF TERMS AND CONDITIONS
Attachment A
Use Restrictions
You agree not to use the Model or Derivatives of the Model:
- In any way that violates any applicable national or international law or regulation or infringes upon the lawful rights and interests of any third party;
- For military use in any way;
- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
- To generate or disseminate verifiably false information and/or content with the purpose of harming others;
- To generate or disseminate inappropriate content subject to applicable regulatory requirements;
- To generate or disseminate personal identifiable information without due authorization or for unreasonable use;
- To defame, disparage or otherwise harass others;
- For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
- For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
- To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
- For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories.
\ No newline at end of file
print-% : ; @echo $* = $($*)
PROJECT_NAME = DeepSeek-VL
COPYRIGHT = "DeepSeek."
PROJECT_PATH = deepseek_vl
SHELL = /bin/bash
SOURCE_FOLDERS = deepseek_vl
PYTHON_FILES = $(shell find $(SOURCE_FOLDERS) -type f -name "*.py" -o -name "*.pyi") cli_chat.py inference.py
COMMIT_HASH = $(shell git log -1 --format=%h)
PATH := $(HOME)/go/bin:$(PATH)
PYTHON ?= $(shell command -v python3 || command -v python)
PYTESTOPTS ?=
.PHONY: default
default: install
# Tools Installation
check_pip_install = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(1) --upgrade)
check_pip_install_extra = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(2) --upgrade)
pylint-install:
$(call check_pip_install_extra,pylint,pylint[spelling])
$(call check_pip_install,pyenchant)
flake8-install:
$(call check_pip_install,flake8)
$(call check_pip_install,flake8-bugbear)
$(call check_pip_install,flake8-comprehensions)
$(call check_pip_install,flake8-docstrings)
$(call check_pip_install,flake8-pyi)
$(call check_pip_install,flake8-simplify)
py-format-install:
$(call check_pip_install,isort)
$(call check_pip_install_extra,black,black[jupyter])
ruff-install:
$(call check_pip_install,ruff)
mypy-install:
$(call check_pip_install,mypy)
pre-commit-install:
$(call check_pip_install,pre-commit)
$(PYTHON) -m pre_commit install --install-hooks
go-install:
# requires go >= 1.16
command -v go || (sudo apt-get install -y golang && sudo ln -sf /usr/lib/go/bin/go /usr/bin/go)
addlicense-install: go-install
command -v addlicense || go install github.com/google/addlicense@latest
addlicense: addlicense-install
addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") -check $(SOURCE_FOLDERS)
# Python linters
pylint: pylint-install
$(PYTHON) -m pylint $(PROJECT_PATH)
flake8: flake8-install
$(PYTHON) -m flake8 --count --show-source --statistics
py-format: py-format-install
$(PYTHON) -m isort --project $(PROJECT_PATH) --check $(PYTHON_FILES) && \
$(PYTHON) -m black --check $(PYTHON_FILES)
ruff: ruff-install
$(PYTHON) -m ruff check .
ruff-fix: ruff-install
$(PYTHON) -m ruff check . --fix --exit-non-zero-on-fix
mypy: mypy-install
$(PYTHON) -m mypy $(PROJECT_PATH) --install-types --non-interactive
pre-commit: pre-commit-install
$(PYTHON) -m pre_commit run --all-files
# Utility functions
lint: ruff flake8 py-format mypy pylint addlicense
format: py-format-install ruff-install addlicense-install
$(PYTHON) -m isort --project $(PROJECT_PATH) $(PYTHON_FILES)
$(PYTHON) -m black $(PYTHON_FILES)
$(PYTHON) -m ruff check . --fix --exit-zero
addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") $(SOURCE_FOLDERS) cli_chat.py inference.py
clean-py:
find . -type f -name '*.py[co]' -delete
find . -depth -type d -name "__pycache__" -exec rm -r "{}" +
find . -depth -type d -name ".ruff_cache" -exec rm -r "{}" +
find . -depth -type d -name ".mypy_cache" -exec rm -r "{}" +
clean: clean-py
# DeepSeek-VL2
## 论文
`DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding`
* https://arxiv.org/abs/2412.10302
## 模型结构
DeepSeek-VL2 由三个核心模块组成:视觉编码器、视觉语言适配器和混合专家 (MoE) 语言模型。DeepSeek-VL2 在其前身 DeepSeek-VL 的仅解码器 LLaVA 风格架构的基础上引入了两项重大改进:动态拼接策略和具有多头潜在注意力 的 DeepSeekMOE 语言模型。 这些创新使得能够更有效地处理高分辨率视觉输入和文本数据。
![alt text](images/arch.png)
## 算法原理
DeepSeek-VL2 的语言模型基于 DeepSeekMoE,它结合了多头潜在注意力机制。 MLA 通过将键值缓存压缩为潜在向量来提高推理效率,从而实现更高的吞吐量能力。 该模型还结合了 MoE 架构,允许通过稀疏计算进行高效推理。 在 MoE 训练期间,DeepSeek-VL2 为每个专家引入一个全局偏差项,以经济高效地改善专家之间的负载平衡。在视觉语言对齐阶段,主要目标是建立视觉特征和语言特征之间的稳固连接。这种对齐使预训练的语言模型能够有效地处理视觉输入。与之前保持固定预训练视觉编码器和语言模型的方法不同,DeepSeek-VL2 调整了固定分辨率的视觉编码器以适应动态高分辨率图像。在此阶段,DeepSeek-VL2 优化了视觉编码器和视觉语言适配器,同时保持语言模型冻结。
![alt text](images/theory.png)
## 环境配置
### Docker(方法一)
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-py3.10-dtk24.04.3-ubuntu20.04
docker run --shm-size 500g --network=host --name=dpvl2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash
# 部署模型环境
cd ./project_path
pip install -e .
### Dockerfile(方法二)
docker build -t <IMAGE_NAME>:<TAG> .
docker run --shm-size 500g --network=host --name=dpvl2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash
cd ./project_path
pip install -e .
## 数据集
## 训练
## 推理
```
CUDA_VISIBLE_DEVICES=0 python inference.py --model_path "DeepSeek-VL2/deepseek-vl2-tiny/"
```
## result
![alt text](images/result.png)
### 精度
## 应用场景
### 算法类别
`图像理解`
### 热点应用行业
`电商,教育,广媒,交通,政府`
## 预训练权重
[SCNet高速下载通道]
* [Deepseek Vl2](http://113.200.138.88:18080/aimodels/deepseek-ai/deepseek-vl2)
* [Deepseek Vl2 Small](http://113.200.138.88:18080/aimodels/deepseek-ai/deepseek-vl2-small)
* [Deepseek Vl2 Tiny](http://113.200.138.88:18080/aimodels/deepseek-ai/deepseek-vl2-tiny)
## 源码仓库及问题反馈
* https://developer.sourcefind.cn/codes/modelzoo/deepseek-vl2_pytorch
## 参考资料
* https://github.com/deepseek-ai/DeepSeek-VL2
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# check if python version is above 3.10
import sys
if sys.version_info >= (3, 10):
print("Python version is above 3.10, patching the collections module.")
# Monkey patch collections
import collections
import collections.abc
for type_name in collections.abc.__all__:
setattr(collections, type_name, getattr(collections.abc, type_name))
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from .processing_deepseek_vl_v2 import DeepseekVLV2Processor
from .modeling_deepseek_vl_v2 import DeepseekVLV2ForCausalLM
__all__ = [
"DeepseekVLV2Processor",
"DeepseekVLV2ForCausalLM",
]
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 102400):
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DeepseekV2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
moe_intermediate_size (`int`, *optional*, defaults to 1407):
Dimension of the MoE representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
n_shared_experts (`int`, *optional*, defaults to None):
Number of shared experts, None means dense model.
n_routed_experts (`int`, *optional*, defaults to None):
Number of routed experts, None means dense model.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor or routed experts.
topk_method (`str`, *optional*, defaults to `gready`):
Topk method used in routed gate.
n_group (`int`, *optional*, defaults to None):
Number of groups for routed experts.
topk_group (`int`, *optional*, defaults to None):
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
num_experts_per_tok (`int`, *optional*, defaults to None):
Number of selected experts, None means dense model.
moe_layer_freq (`int`, *optional*, defaults to 1):
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
first_k_dense_replace (`int`, *optional*, defaults to 0):
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
\--k dense layers--/
norm_topk_prob (`bool`, *optional*, defaults to False):
Whether to normalize the weights of the routed experts.
scoring_func (`str`, *optional*, defaults to 'softmax'):
Method of computing expert weights.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Auxiliary loss weight coefficient.
seq_aux = (`bool`, *optional*, defaults to True):
Whether to compute the auxiliary loss for each individual sample.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
the model will use multi-latent attention, otherwise, it will use multi-head attention.
```python
>>> from transformers import DeepseekV2Model, DeepseekV2Config
>>> # Initializing a Deepseek-V2 style configuration
>>> configuration = DeepseekV2Config()
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=102400,
hidden_size=4096,
intermediate_size=11008,
moe_intermediate_size = 1407,
num_hidden_layers=30,
num_attention_heads=32,
num_key_value_heads=32,
n_shared_experts = None,
n_routed_experts = None,
ep_size = 1,
routed_scaling_factor = 1.0,
kv_lora_rank = 512,
q_lora_rank = 1536,
qk_rope_head_dim = 64,
v_head_dim = 128,
qk_nope_head_dim = 128,
topk_method = 'gready',
n_group = None,
topk_group = None,
num_experts_per_tok = None,
moe_layer_freq = 1,
first_k_dense_replace = 0,
norm_topk_prob = False,
scoring_func = 'softmax',
aux_loss_alpha = 0.001,
seq_aux = True,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=100000,
eos_token_id=100001,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
use_mla=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.ep_size = ep_size
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.topk_method = topk_method
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.moe_layer_freq = moe_layer_freq
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.scoring_func = scoring_func
self.aux_loss_alpha = aux_loss_alpha
self.seq_aux = seq_aux
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = float(rms_norm_eps)
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.use_mla = use_mla
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
"""
From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
"""
import dataclasses
from enum import IntEnum, auto
from typing import Any, Dict, List
class SeparatorStyle(IntEnum):
"""Separator styles."""
DeepSeek = auto()
DeepSeekV2 = auto()
PLAIN = auto()
ALIGNMENT = auto()
@dataclasses.dataclass
class Conversation:
"""A class that manages prompt templates and keeps all conversation history."""
# The name of this template
name: str
# The template of the system prompt
system_template: str = "{system_message}"
# The system message
system_message: str = ""
# The names of two roles
roles: List[str] = (("USER", "ASSISTANT"),)
# All messages. Each item is (role, message).
messages: List[List[str]] = ()
# The number of few shot examples
offset: int = 0
# The separator style and configurations
sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
sep: str = "\n"
sep2: str = None
# Stop criteria (the default one is EOS token)
stop_str: str = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
def get_prompt(self) -> str:
"""Get the prompt for generation."""
system_prompt = self.system_template.format(system_message=self.system_message)
if self.sep_style == SeparatorStyle.DeepSeek:
seps = [self.sep, self.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.DeepSeekV2:
seps = [self.sep, self.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
if role == "User":
ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
else:
ret += message + self.sep2
else:
ret = ret
return ret
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = ""
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i % 2 == 0:
ret += message + seps[i % 2]
else:
ret += message + seps[i % 2]
else:
ret += ""
return ret
elif self.sep_style == SeparatorStyle.ALIGNMENT:
seps = [self.sep, self.sep2]
ret = ""
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i % 2 == 0:
ret += '<image>\n' + seps[i % 2]
else:
ret += message + seps[i % 2]
else:
ret += ""
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def set_system_message(self, system_message: str):
"""Set the system message."""
self.system_message = system_message
def append_message(self, role: str, message: str):
"""Append a new message."""
self.messages.append([role, message])
def update_last_message(self, message: str):
"""Update the last output.
The last message is typically set to be None when constructing the prompt,
so we need to update it in-place after getting the response from a model.
"""
self.messages[-1][1] = message
def reset_message(self):
"""Reset a new message."""
self.messages = []
def to_gradio_chatbot(self):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_openai_api_messages(self):
"""Convert the conversation to OpenAI chat completion format."""
system_prompt = self.system_template.format(system_message=self.system_message)
ret = [{"role": "system", "content": system_prompt}]
for i, (_, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append({"role": "user", "content": msg})
else:
if msg is not None:
ret.append({"role": "assistant", "content": msg})
return ret
def copy(self):
return Conversation(
name=self.name,
system_template=self.system_template,
system_message=self.system_message,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
stop_str=self.stop_str,
stop_token_ids=self.stop_token_ids,
)
def dict(self):
return {
"template_name": self.name,
"system_message": self.system_message,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
}
# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}
def register_conv_template(template: Conversation, override: bool = False):
"""Register a new conversation template."""
if not override:
assert template.name not in conv_templates, f"{template.name} has been registered."
conv_templates[template.name] = template
def get_conv_template(name: str) -> Conversation:
"""Get a conversation template."""
return conv_templates[name].copy()
# register_conv_template(
# Conversation(
# name="deepseek",
# system_template="{system_message}",
# # system_message="You are a helpful assistant. Please answer truthfully and write out your "
# # "thinking step by step to be sure you get the right answer.",
# system_message="",
# roles=("User", "Assistant"),
# messages=(),
# offset=0,
# sep_style=SeparatorStyle.DeepSeek,
# sep="\n\n",
# sep2="<|end▁of▁sentence|>",
# stop_token_ids=[100001],
# stop_str=["User:", "<|end▁of▁sentence|>"]
# )
# )
register_conv_template(
Conversation(
name="deepseek",
system_template="{system_message}",
# system_message="You are a helpful assistant. Please answer truthfully and write out your "
# "thinking step by step to be sure you get the right answer.",
system_message="",
roles=("<|User|>", "<|Assistant|>"),
messages=(),
offset=0,
sep_style=SeparatorStyle.DeepSeek,
sep="\n\n",
sep2="<|end▁of▁sentence|>",
stop_token_ids=[100001],
stop_str=["User:", "<|end▁of▁sentence|>"]
)
)
# register_conv_template(
# Conversation(
# name="deepseekv2",
# system_template="{system_message}",
# system_message="",
# roles=("User", "Assistant"),
# messages=(),
# offset=0,
# sep_style=SeparatorStyle.DeepSeekV2,
# sep="\n<|sft▁end|>",
# sep2="<|end▁of▁sentence|>",
# stop_token_ids=[100001],
# stop_str=["User:", "<|end▁of▁sentence|>"]
# )
# )
register_conv_template(
Conversation(
name="deepseekv2",
system_template="{system_message}",
system_message="",
roles=("|<User>|", "|<Assistant>|"),
messages=(),
offset=0,
sep_style=SeparatorStyle.DeepSeekV2,
sep="\n<|sft▁end|>",
sep2="<|end▁of▁sentence|>",
stop_token_ids=[100001],
stop_str=["User:", "<|end▁of▁sentence|>"]
)
)
register_conv_template(
Conversation(
name="plain",
system_template="",
system_message="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="",
sep2="",
stop_token_ids=[100001],
stop_str=['</s>'],
)
)
register_conv_template(
Conversation(
name="alignment",
system_template="",
system_message="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.ALIGNMENT,
sep="",
sep2="",
stop_token_ids=[100001],
stop_str=['</s>'],
)
)
if __name__ == "__main__":
print("deepseek template:")
conv = get_conv_template("deepseek")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi! This is Tony.")
conv.append_message(conv.roles[0], "Who are you?")
conv.append_message(conv.roles[1], "I am a helpful assistant.")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("deepseekv2 template:")
conv = get_conv_template("deepseekv2")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi! This is Tony.")
conv.append_message(conv.roles[0], "Who are you?")
conv.append_message(conv.roles[1], "I am a helpful assistant.")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment