bm25_retriever_example.py 1.39 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import asyncio
import os

from dbgpt.configs.model_config import ROOT_PATH
from dbgpt_ext.rag import ChunkParameters
from dbgpt_ext.rag.assembler.bm25 import BM25Assembler
from dbgpt_ext.rag.knowledge import KnowledgeFactory
from dbgpt_ext.storage.vector_store.elastic_store import ElasticsearchStoreConfig

"""Embedding rag example.
    pre-requirements:
    set your elasticsearch config in your example code.

    Examples:
        ..code-block:: shell
            python examples/rag/bm25_retriever_example.py
"""


def _create_es_config():
    """Create vector connector."""
    return ElasticsearchStoreConfig(
        uri="localhost",
        port="9200",
        user="elastic",
        password="dbgpt",
    )


async def main():
    file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
    knowledge = KnowledgeFactory.from_file_path(file_path)
    es_config = _create_es_config()
    chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
    # create bm25 assembler
    assembler = BM25Assembler.load_from_knowledge(
        knowledge=knowledge,
        es_config=es_config,
        chunk_parameters=chunk_parameters,
    )
    assembler.persist()
    # get bm25 retriever
    retriever = assembler.as_retriever(3)
    chunks = retriever.retrieve_with_scores("what is awel talk about", 0.3)
    print(f"bm25 rag example results:{chunks}")


if __name__ == "__main__":
    asyncio.run(main())