stats.py 10 KB
Newer Older
yuhai's avatar
yuhai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import sys
import glob
import numpy as np
import shutil
try:
    import deepks
except ImportError as e:
    sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/../../")
from deepks.utils import check_list, check_array
from deepks.utils import load_array, load_yaml
from deepks.utils import get_sys_name, get_with_prefix


def concat_data(systems=None, sys_dir=".", dump_dir=".", pattern="*"):
    if systems is None:
        systems = sorted(filter(os.path.isdir, 
            map(os.path.abspath, glob.glob(f"{sys_dir}/{pattern}"))))
    npy_names = list(map(os.path.basename, glob.glob(f"{systems[0]}/*.npy")))
    os.makedirs(dump_dir, exist_ok=True)
    for nm in npy_names:
        tmp_array = np.concatenate([np.load(f"{sys}/{nm}") for sys in systems])
        np.save(f"{dump_dir}/{nm}", tmp_array)
    if os.path.exists(f'{systems[0]}/system.raw'):
        shutil.copy(f'{systems[0]}/system.raw', dump_dir)


def print_stats(systems=None, test_sys=None, 
               dump_dir=None, test_dump=None, group=False,
               with_conv=True, with_e=True, e_name="e_tot", 
               with_f=True, f_name="f_tot"):
    load_func = load_stat if not group else load_stat_grouped
    if dump_dir is None:
        dump_dir = "."
    if test_dump is None:
        test_dump = dump_dir
    shift = None
    if systems is not None:
        tr_c, tr_e, tr_f = load_func(systems, dump_dir, with_conv, 
                                     with_e, e_name, with_f, f_name)
        print("Training:")
        if tr_c is not None:
            print_stats_conv(tr_c, indent=2)
        if tr_e is not None:
            shift = tr_e.mean()
            print_stats_e(tr_e, shift=shift, indent=2)
        if tr_f is not None:
            print_stats_f(tr_f, indent=2)
    if test_sys is not None:
        ts_c, ts_e, ts_f = load_func(test_sys, test_dump, with_conv, 
                                     with_e, e_name, with_f, f_name)
        print("Testing:")
        if ts_c is not None:
            print_stats_conv(ts_c, indent=2)
        if ts_e is not None:
            print_stats_e(ts_e, shift=shift, indent=2)
        if ts_f is not None:
            print_stats_f(ts_f, indent=2)
    

def print_stats_conv(conv, indent=0):
    nsys = conv.shape[0]
    ind = " "*indent
    print(ind+f'Convergence:')
    print(ind+f'  {np.sum(conv)} / {nsys} = \t {np.mean(conv):.5f}')


def print_stats_e(e_err, shift=None, indent=0):
    ind = " "*indent
    print(ind+"Energy:")
    print(ind+f'  ME: \t {e_err.mean()}')
    print(ind+f'  MAE: \t {np.abs(e_err).mean()}')
    if shift:
        print(ind+f'  MARE: \t {np.abs(e_err-shift).mean()}')


def print_stats_f(f_err, indent=0):
    ind = " "*indent
    print(ind+"Force:")
    print(ind+f'  MAE: \t {np.abs(f_err).mean()}')


def load_stat(systems, dump_dir,
              with_conv=True, with_e=True, e_name="e_tot", 
              with_f=True, f_name="f_tot"):
    systems = check_list(systems)
    c_res = []
    e_err = []
    f_err = []
    for fl in systems:
        lbase = get_sys_name(fl)
        rbase = os.path.join(dump_dir, os.path.basename(lbase))
        if with_conv:
            try:
                c_res.append(load_array(get_with_prefix("conv", rbase, ".npy")))
            except FileNotFoundError as e:
                print("Warning! conv.npy not found:", e, file=sys.stderr)
        if with_e:
            try:
                re = load_array(get_with_prefix(e_name, rbase, ".npy")).reshape(-1,1)
                le = load_array(get_with_prefix("energy", lbase, ".npy")).reshape(-1,1)
                e_err.append(le - re)
            except FileNotFoundError as e:
                print("Warning! energy file not found:", e, file=sys.stderr)
        if with_f:
            try:
                rf = load_array(get_with_prefix(f_name, rbase, ".npy"))
                lf = load_array(get_with_prefix("force", lbase, ".npy")).reshape(rf.shape)
                f_err.append(np.abs(lf - rf).mean((-1,-2)))
            except FileNotFoundError as e:
                print("Warning! force file not found:", e, file=sys.stderr)
    return np.concatenate(c_res, 0) if c_res else None, \
           np.concatenate(e_err, 0) if e_err else None, \
           np.concatenate(f_err, 0) if f_err else None


def load_stat_grouped(systems, dump_dir=".",
                      with_conv=True, with_e=True, e_name="e_tot", 
                      with_f=True, f_name="f_tot"):
    systems = check_list(systems)
    lbases = [get_sys_name(fl) for fl in systems]
    c_res = e_err = f_err = None
    if with_conv:
        c_res = load_array(get_with_prefix("conv", dump_dir, ".npy"))
    if with_e:
        e_res = load_array(get_with_prefix(e_name, dump_dir, ".npy"))
        e_lbl = np.concatenate([
            load_array(get_with_prefix("energy", lb, ".npy")) for lb in lbases
        ], 0).reshape(-1,1)
        e_err = e_lbl - e_res
    if with_f:
        f_res = load_array(get_with_prefix(f_name, dump_dir, ".npy"))
        f_lbl = np.concatenate([
            load_array(get_with_prefix("force", lb, ".npy")) for lb in lbases
        ], 0).reshape(f_res.shape)
        f_err = f_lbl - f_res
    return c_res, e_err, f_err


# Below are legacy tools, kept for old examples

def print_stats_per_sys(err, conv=None, train_idx=None, test_idx=None):
    err = np.array(err).reshape(-1)
    nsys = err.shape[0]
    if conv is not None:
        assert len(conv) == nsys
        print(f'converged calculation: {np.sum(conv)} / {nsys} = {np.mean(conv):.3f}')
    print(f'mean error: {err.mean()}')
    print(f'mean absolute error: {np.abs(err).mean()}')
    if train_idx is not None:
        if test_idx is None:
            test_idx = np.setdiff1d(np.arange(nsys), train_idx, assume_unique=True)
        print(f'  training: {np.abs(err[train_idx]).mean()}')
        print(f'  testing: {np.abs(err[test_idx]).mean()}')
        print(f'mean absolute error after shift: {np.abs(err - err[train_idx].mean()).mean()}')
        print(f'  training: {np.abs(err[train_idx] - err[train_idx].mean()).mean()}')
        print(f'  testing: {np.abs(err[test_idx] - err[train_idx].mean()).mean()}')
    

def make_label(sys_dir, eref, fref=None):
    eref = eref.reshape(-1,1)
    nmol = eref.shape[0]
    ehf = np.load(f'{sys_dir}/e_base.npy')
    assert ehf.shape[0] == nmol
    ecc = eref - ehf
    np.save(f'{sys_dir}/l_e_delta.npy', ecc)
    if fref is not None:
        fref = fref.reshape(nmol, -1, 3)
        fhf = np.load(f'{sys_dir}/f_base.npy')
        assert fhf.shape == fref.shape
        fcc = fref - fhf
        np.save(f'{sys_dir}/l_f_delta.npy', fcc)


def collect_data(train_idx, test_idx=None, 
                 sys_dir="results", ene_ref="e_ref.npy", force_ref=None,
                 dump_dir=".", verbose=True):
    erefs = check_array(ene_ref).reshape(-1)
    nsys = erefs.shape[0]
    if nsys == 1 and "e_tot.npy" in os.listdir(sys_dir):
        systems = [os.path.abspath(sys_dir)]
    else:
        systems = sorted(map(os.path.abspath, glob.glob(f"{sys_dir}/*")))
    assert nsys == len(systems)

    convs = []
    ecfs = []
    for sys_i, ec_i in zip(systems, erefs):
        e0_i = np.load(os.path.join(sys_i, "e_base.npy"))
        ecc_i = ec_i - e0_i
        np.save(os.path.join(sys_i, "l_e_delta.npy"), ecc_i)
        convs.append(np.load(os.path.join(sys_i, "conv.npy")))
        ecfs.append(np.load(os.path.join(sys_i, "e_tot.npy")))
    convs = np.array(convs).reshape(-1)
    ecfs = np.array(ecfs).reshape(-1)
    err = erefs - ecfs

    if test_idx is None:
        test_idx = np.setdiff1d(np.arange(nsys), train_idx, assume_unique=True)
    if verbose:
        print(sys_dir)
        print_stats_per_sys(err, convs, train_idx, test_idx)
    
    np.savetxt(f'{dump_dir}/train_paths.raw', np.array(systems)[train_idx], fmt='%s')
    np.savetxt(f'{dump_dir}/test_paths.raw', np.array(systems)[test_idx], fmt='%s')
    np.savetxt(f'{dump_dir}/e_result.out', np.stack([erefs, ecfs], axis=-1), header="real pred")
    
    
def collect_data_grouped(train_idx, test_idx=None, 
                         sys_dir="results", ene_ref="e_ref.npy", force_ref=None,
                         dump_dir=".", append=True, verbose=True):
    eref = check_array(ene_ref).reshape(-1, 1)
    fref = check_array(force_ref)
    nmol = eref.shape[0]
    if not os.path.exists(f'{sys_dir}/e_tot.npy'):
        concat_data(sys_dir, dump_dir=sys_dir)    
    ecf = np.load(f'{sys_dir}/e_tot.npy').reshape(-1, 1)
    assert ecf.shape[0] == nmol, f"{ene_ref} ref size: {nmol}, {sys_dir} data size: {ecf.shape[0]}"
    make_label(sys_dir, eref, fref)
    # ehf = np.load(f'{sys_dir}/e_base.npy')
    # np.save(f'{sys_dir}/l_e_delta.npy', eref - ehf)

    err = eref - ecf
    conv = np.load(f'{sys_dir}/conv.npy').reshape(-1)
    if test_idx is None:
        test_idx = np.setdiff1d(np.arange(nmol), train_idx, assume_unique=True)
    if verbose:
        print(sys_dir)
        print_stats_per_sys(err.reshape(-1), conv.reshape(-1), train_idx, test_idx)
    
    dd = [name for name in os.listdir(sys_dir) if ".npy" in name]
    os.makedirs(f'{sys_dir}/train', exist_ok=True)
    os.makedirs(f'{sys_dir}/test', exist_ok=True)
    for d in dd:
        np.save(f"{sys_dir}/train/{d}", np.load(f'{sys_dir}/{d}')[train_idx])
    for d in dd:
        np.save(f"{sys_dir}/test/{d}", np.load(f'{sys_dir}/{d}')[test_idx])
    shutil.copy(f'{sys_dir}/system.raw', f'{sys_dir}/train')
    shutil.copy(f'{sys_dir}/system.raw', f'{sys_dir}/test')
    # np.savetxt(f'{dump_dir}/train_paths.raw', [os.path.abspath(f'{dump_dir}/train')], fmt='%s')
    # np.savetxt(f'{dump_dir}/test_paths.raw', [os.path.abspath(f'{dump_dir}/test')], fmt='%s')
    # Path(f'{dump_dir}/train_paths.raw').write_text(str(Path(f'{dump_dir}/train').absolute()))
    # Path(f'{dump_dir}/test_paths.raw').write_text(str(Path(f'{dump_dir}/test').absolute()))
    mode = "a" if append else "w"
    with open(f'{dump_dir}/train_paths.raw', mode) as fp:
        fp.write(os.path.abspath(f'{sys_dir}/train') + "\n")
    with open(f'{dump_dir}/test_paths.raw', mode) as fp:
        fp.write(os.path.abspath(f'{sys_dir}/test') + "\n")


if __name__ == "__main__":
    from deepks.main import stats_cli as cli
    cli()