_old_grad.py 8.29 KB
Newer Older
yuhai's avatar
yuhai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import numpy as np
from pyscf import gto, lib
from pyscf.grad import rks as grad_base


class Gradients(grad_base.Gradients):
    # all variables and functions start with "t_" are torch related.
    # convention in einsum:
    #   i,j: orbital
    #   a,b: atom
    #   p,q: projected basis on atom
    #   r,s: mol basis in pyscf
    #   x  : space component of gradient
    #   v  : eigen values of projected dm
    """Analytical nuclear gradient for our SCF model"""
    
    def __init__(self, mf):
        super().__init__(mf)
        # prepare integrals for projection and derivative
        self.prepare_integrals()
        # add a field to memorize the pulay term in ec
        self.dec = None
        self._keys.update(self.__dict__.keys())

    def prepare_integrals(self):
        mf = self.base
        self._pmol = mf._pmol
        # < mol_ao | alpha^I_rlm > by shells
        self._t_ovlp_shells = mf._t_ovlp_shells
        # \partial E / \partial (D^I_rl)_mm' by shells
        self._t_gedm_shells = _t_get_grad_dms(mf) if mf.mo_coeff is not None else None
        # < \nabla mol_ao | alpha^I_rlm >
        self._t_proj_ipovlp = torch.from_numpy(
            mf.proj_intor("int1e_ipovlp")).double().to(mf.device)

    def extra_force(self, atom_id, envs):
        """We calculate the pulay force caused by our atomic projection here"""
        de0 = super().extra_force(atom_id, envs)
        dm = envs["dm0"]
        t_dm = torch.from_numpy(dm).double().to(self.base.device)
        t_dec = self._t_get_pulay(atom_id, t_dm)
        dec = t_dec.detach().cpu().numpy()
        # memorize dec results for calculate hf grad
        if self.dec is None:
            self.dec = np.zeros((len(envs["atmlst"]), 3))
        self.dec[envs["k"]] = dec
        # return summed grads
        return de0 + dec
    
    def kernel(self, *args, **kwargs):
        # do nothing additional to the original one but symmetrizing dec
        # return exact the same thing
        de = super().kernel(*args, **kwargs)
        if self.mol.symmetry:
            self.dec = self.symmetrize(self.dec, self.atmlst)
        return de

    def get_base(self):
        """return the grad given by raw Hartree Fock Hamiltonian under current dm"""
        assert self.de is not None and self.dec is not None
        return self.de - self.dec
        
    def _t_get_pulay(self, atom_id, t_dm):
        """calculate pulay force in torch tensor"""
        if self._t_gedm_shells is None:
            self._t_gedm_shells = _t_get_grad_dms(self.base)
        # mask to select specifc atom contribution from ipovlp
        mask = self._t_make_mask(atom_id)
        # \partial < mol_ao | aplha^I_rlm' > / \partial X^J
        atom_ipovlp = (self._t_proj_ipovlp * mask).reshape(3, self.mol.nao, self.mol.natm, -1)
        # grad X^I w.r.t atomic overlap coeff by shells
        govx_shells = torch.split(atom_ipovlp, self.base._shell_sec, -1)
        # \partial (D^I_rl)_mm' / \partial X^J by shells, lack of symmetrize
        gdmx_shells = [torch.einsum('xrap,rs,saq->xapq', govx, t_dm, po)
                            for govx, po in zip(govx_shells, self._t_ovlp_shells)]
        # \partial E / \partial X^J by shells
        gex_shells = [torch.einsum("xapq,apq->x", gdmx + gdmx.transpose(-1,-2), gedm)
                            for gdmx, gedm in zip(gdmx_shells, self._t_gedm_shells)]
        # total pulay term in gradient
        return torch.stack(gex_shells, 0).sum(0)

    def _t_make_mask(self, atom_id):
        mask = torch.from_numpy(
                   make_mask(self.mol, self._pmol, atom_id)
               ).double().to(self.base.device)
        return mask

    def make_grad_pdm_x(self, dm=None, flatten=False):
        if dm is None:
            dm = self.base.make_rdm1()
        t_dm = torch.from_numpy(dm).double().to(self.base.device)
        all_gdmx_shells = self._t_make_grad_pdm_x(t_dm)
        if not flatten:
            return [s.detach().cpu().numpy() for s in all_gdmx_shells]
        else:
            return torch.cat([s.flatten(-2) for s in all_gdmx_shells], 
                             dim=-1).detach().cpu().numpy()

    def _t_make_grad_pdm_x(self, t_dm):
        atom_gdmx_shells = []
        for atom_id in range(self.mol.natm):
            mask = self._t_make_mask(atom_id)
            atom_ipovlp = (self._t_proj_ipovlp * mask).reshape(3, self.mol.nao, self.mol.natm, -1)
            govx_shells = torch.split(atom_ipovlp, self.base._shell_sec, -1)
            gdmx_shells = [torch.einsum('xrap,rs,saq->xapq', govx, t_dm, po)
                                for govx, po in zip(govx_shells, self._t_ovlp_shells)]
            atom_gdmx_shells.append([gdmx + gdmx.transpose(-1,-2) for gdmx in gdmx_shells])
        # [natom (deriv atom) x 3 (xyz) x natom (proj atom) x nsph (1|3|5) x nsph] list
        all_gdmx_shells = [torch.stack(s, dim=0) for s in zip(*atom_gdmx_shells)]
        return all_gdmx_shells

    def make_grad_eig_x(self, dm=None):
        if dm is None:
            dm = self.base.make_rdm1()
        t_dm = torch.from_numpy(dm).double().to(self.base.device)
        return self._t_make_grad_eig_x(t_dm).detach().cpu().numpy()

    def _t_make_grad_eig_x(self, t_dm):
        # v stands for eigen values
        shell_pdm = [torch.einsum('rap,rs,saq->apq', po, t_dm, po).requires_grad_(True)
                        for po in self._t_ovlp_shells]
        calc_eig = lambda dm: torch.symeig(dm, True)[0]
        shell_gvdm = [get_batch_jacobian(calc_eig, dm, dm.shape[-1]) 
                        for dm in shell_pdm]
        shell_gdmx = self._t_make_grad_pdm_x(t_dm)
        shell_gvx = [torch.einsum("bxapq,avpq->bxav", gdmx, gvdm) 
                        for gdmx, gvdm in zip(shell_gdmx, shell_gvdm)]
        return torch.cat(shell_gvx, dim=-1)

    def as_scanner(self):
        scanner = super().as_scanner()
        # make a new version of call method
        class NewScanner(type(scanner)):
            def __call__(self, mol_or_geom, **kwargs):
                if isinstance(mol_or_geom, gto.Mole):
                    mol = mol_or_geom
                else:
                    mol = self.mol.set_geom_(mol_or_geom, inplace=False)

                mf_scanner = self.base
                e_tot = mf_scanner(mol)
                self.mol = mol

                if getattr(self, 'grids', None):
                    self.grids.reset(mol)
                # adding the following line to refresh integrals
                self.prepare_integrals()
                de = self.kernel(**kwargs)
                return e_tot, de

        # hecking the old scanner's method, bind the new one
        scanner.__class__ = NewScanner
        return scanner


def make_mask(mol1, mol2, atom_id):
    mask = np.zeros((mol1.nao, mol2.nao))
    bg1, ed1 = mol1.aoslice_by_atom()[atom_id, 2:]
    bg2, ed2 = mol2.aoslice_by_atom()[atom_id, 2:]
    mask[bg1:ed1, :] -= 1
    mask[:, bg2:ed2] += 1
    return mask


def _t_get_grad_dms(mf, dm=None):
    # calculate \partial E / \partial (D^I_rl)_mm' by shells
    if dm is None:
        dm = mf.make_rdm1()
    t_dm = torch.from_numpy(dm).double().to(mf.device)
    proj_dms = [torch.einsum('rap,rs,saq->apq', po, t_dm, po).requires_grad_(True)
                    for po in mf._t_ovlp_shells]
    if mf.net is None:
        return [torch.zeros_like(pdm) for pdm in proj_dms]
    proj_eigs = [torch.symeig(dm, eigenvectors=True)[0]
                    for dm in proj_dms]
    ceig = torch.cat(proj_eigs, dim=-1).unsqueeze(0) # 1 x natoms x nproj
    ec = mf.net(ceig)
    grad_dms = torch.autograd.grad(ec, proj_dms)
    return grad_dms


def get_batch_jacobian(f, x, noutputs):
    nindim = len(x.shape)-1
    x = x.unsqueeze(1) # b, 1 ,*in_dim
    n = x.shape[0]
    x = x.repeat(1, noutputs, *[1]*nindim) # b, out_dim, *in_dim
    x.requires_grad_(True)
    y = f(x)
    input_val = torch.eye(noutputs).reshape(1,noutputs, noutputs).repeat(n, 1, 1)
    return torch.autograd.grad(y, x, input_val)[0]


# only for testing purpose, not used in code
def finite_difference(f, x, delta=1e-6):
    in_shape = x.shape
    y0 = f(x)
    out_shape = y0.shape
    res = np.empty(in_shape + out_shape)
    for idx in np.ndindex(*in_shape):
        diff = np.zeros(in_shape)
        diff[idx] += delta
        y1 = f(x+diff)
        res[idx] = (y1-y0) / delta
    return res


Grad = Gradients

# from deepks.scf.scf import DSCF
# # Inject to SCF class
# DSCF.Gradients = lib.class_as_method(Gradients)