test_sort.py 38 KB
Newer Older
dugupeiwen's avatar
dugupeiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
import copy
import itertools
import math
import random
import sys
from typing import KeysView

import numpy as np

from numba.core.compiler import compile_isolated, Flags
from numba import jit, njit
from numba.core import types, utils, errors
import unittest
from numba import testing
from numba.tests.support import TestCase, MemoryLeakMixin, tag

from numba.misc.quicksort import make_py_quicksort, make_jit_quicksort
from numba.misc.mergesort import make_jit_mergesort
from numba.misc.timsort import make_py_timsort, make_jit_timsort, MergeRun


def make_temp_list(keys, n):
    return [keys[0]] * n

def make_temp_array(keys, n):
    return np.empty(n, keys.dtype)


py_list_timsort = make_py_timsort(make_temp_list)

py_array_timsort = make_py_timsort(make_temp_array)

jit_list_timsort = make_jit_timsort(make_temp_list)

jit_array_timsort = make_jit_timsort(make_temp_array)

py_quicksort = make_py_quicksort()

jit_quicksort = make_jit_quicksort()


def sort_usecase(val):
    val.sort()

def argsort_usecase(val):
    return val.argsort()

def argsort_kind_usecase(val, is_stable=False):
    if is_stable:
        return val.argsort(kind='mergesort')
    else:
        return val.argsort(kind='quicksort')

def sorted_usecase(val):
    return sorted(val)

def sorted_reverse_usecase(val, b):
    return sorted(val, reverse=b)

def np_sort_usecase(val):
    return np.sort(val)

def np_argsort_usecase(val):
    return np.argsort(val)

def np_argsort_kind_usecase(val, is_stable=False):
    if is_stable:
        return np.argsort(val, kind='mergesort')
    else:
        return np.argsort(val, kind='quicksort')

def list_sort_usecase(n):
    np.random.seed(42)
    l = []
    for i in range(n):
        l.append(np.random.random())
    ll = l[:]
    ll.sort()
    return l, ll

def list_sort_reverse_usecase(n, b):
    np.random.seed(42)
    l = []
    for i in range(n):
        l.append(np.random.random())
    ll = l[:]
    ll.sort(reverse=b)
    return l, ll


class BaseSortingTest(object):

    def random_list(self, n, offset=10):
        random.seed(42)
        l = list(range(offset, offset + n))
        random.shuffle(l)
        return l

    def sorted_list(self, n, offset=10):
        return list(range(offset, offset + n))

    def revsorted_list(self, n, offset=10):
        return list(range(offset, offset + n))[::-1]

    def initially_sorted_list(self, n, m=None, offset=10):
        if m is None:
            m = n // 2
        l = self.sorted_list(m, offset)
        l += self.random_list(n - m, offset=l[-1] + offset)
        return l

    def duprandom_list(self, n, factor=None, offset=10):
        random.seed(42)
        if factor is None:
            factor = int(math.sqrt(n))
        l = (list(range(offset, offset + (n // factor) + 1)) * (factor + 1))[:n]
        assert len(l) == n
        random.shuffle(l)
        return l

    def dupsorted_list(self, n, factor=None, offset=10):
        if factor is None:
            factor = int(math.sqrt(n))
        l = (list(range(offset, offset + (n // factor) + 1)) * (factor + 1))[:n]
        assert len(l) == n, (len(l), n)
        l.sort()
        return l

    def assertSorted(self, orig, result):
        self.assertEqual(len(result), len(orig))
        # sorted() returns a list, so make sure we compare to another list
        self.assertEqual(list(result), sorted(orig))

    def assertSortedValues(self, orig, orig_values, result, result_values):
        self.assertEqual(len(result), len(orig))
        self.assertEqual(list(result), sorted(orig))
        zip_sorted = sorted(zip(orig, orig_values), key=lambda x: x[0])
        zip_result = list(zip(result, result_values))
        self.assertEqual(zip_sorted, zip_result)
        # Check stability
        for i in range(len(zip_result) - 1):
            (k1, v1), (k2, v2) = zip_result[i], zip_result[i + 1]
            if k1 == k2:
                # Assuming values are unique, which is enforced by the tests
                self.assertLess(orig_values.index(v1), orig_values.index(v2))

    def fibo(self):
        a = 1
        b = 1
        while True:
            yield a
            a, b = b, a + b

    def make_sample_sorted_lists(self, n):
        lists = []
        for offset in (20, 120):
            lists.append(self.sorted_list(n, offset))
            lists.append(self.dupsorted_list(n, offset))
        return lists

    def make_sample_lists(self, n):
        lists = []
        for offset in (20, 120):
            lists.append(self.sorted_list(n, offset))
            lists.append(self.dupsorted_list(n, offset))
            lists.append(self.revsorted_list(n, offset))
            lists.append(self.duprandom_list(n, offset))
        return lists


class BaseTimsortTest(BaseSortingTest):

    def merge_init(self, keys):
        f = self.timsort.merge_init
        return f(keys)

    def test_binarysort(self):
        n = 20
        def check(l, n, start=0):
            res = self.array_factory(l)
            f(res, res, 0, n, start)
            self.assertSorted(l, res)

        f = self.timsort.binarysort
        l = self.sorted_list(n)
        check(l, n)
        check(l, n, n//2)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.initially_sorted_list(n, n//2)
        check(l, n)
        check(l, n, n//2)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.random_list(n)
        check(l, n)
        l = self.duprandom_list(n)
        check(l, n)

    def test_binarysort_with_values(self):
        n = 20
        v = list(range(100, 100+n))

        def check(l, n, start=0):
            res = self.array_factory(l)
            res_v = self.array_factory(v)
            f(res, res_v, 0, n, start)
            self.assertSortedValues(l, v, res, res_v)

        f = self.timsort.binarysort
        l = self.sorted_list(n)
        check(l, n)
        check(l, n, n//2)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.initially_sorted_list(n, n//2)
        check(l, n)
        check(l, n, n//2)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.random_list(n)
        check(l, n)
        l = self.duprandom_list(n)
        check(l, n)

    def test_count_run(self):
        n = 16
        f = self.timsort.count_run

        def check(l, lo, hi):
            n, desc = f(self.array_factory(l), lo, hi)
            # Fully check invariants
            if desc:
                for k in range(lo, lo + n - 1):
                    a, b = l[k], l[k + 1]
                    self.assertGreater(a, b)
                if lo + n < hi:
                    self.assertLessEqual(l[lo + n - 1], l[lo + n])
            else:
                for k in range(lo, lo + n - 1):
                    a, b = l[k], l[k + 1]
                    self.assertLessEqual(a, b)
                if lo + n < hi:
                    self.assertGreater(l[lo + n - 1], l[lo + n], l)


        l = self.sorted_list(n, offset=100)
        check(l, 0, n)
        check(l, 1, n - 1)
        check(l, 1, 2)
        l = self.revsorted_list(n, offset=100)
        check(l, 0, n)
        check(l, 1, n - 1)
        check(l, 1, 2)
        l = self.random_list(n, offset=100)
        for i in range(len(l) - 1):
            check(l, i, n)
        l = self.duprandom_list(n, offset=100)
        for i in range(len(l) - 1):
            check(l, i, n)

    def test_gallop_left(self):
        n = 20
        f = self.timsort.gallop_left

        def check(l, key, start, stop, hint):
            k = f(key, l, start, stop, hint)
            # Fully check invariants
            self.assertGreaterEqual(k, start)
            self.assertLessEqual(k, stop)
            if k > start:
                self.assertLess(l[k - 1], key)
            if k < stop:
                self.assertGreaterEqual(l[k], key)

        def check_all_hints(l, key, start, stop):
            for hint in range(start, stop):
                check(l, key, start, stop, hint)

        def check_sorted_list(l):
            l = self.array_factory(l)
            for key in (l[5], l[15], l[0], -1000, l[-1], 1000):
                check_all_hints(l, key, 0, n)
                check_all_hints(l, key, 1, n - 1)
                check_all_hints(l, key, 8, n - 8)

        l = self.sorted_list(n, offset=100)
        check_sorted_list(l)
        l = self.dupsorted_list(n, offset=100)
        check_sorted_list(l)

    def test_gallop_right(self):
        n = 20
        f = self.timsort.gallop_right

        def check(l, key, start, stop, hint):
            k = f(key, l, start, stop, hint)
            # Fully check invariants
            self.assertGreaterEqual(k, start)
            self.assertLessEqual(k, stop)
            if k > start:
                self.assertLessEqual(l[k - 1], key)
            if k < stop:
                self.assertGreater(l[k], key)

        def check_all_hints(l, key, start, stop):
            for hint in range(start, stop):
                check(l, key, start, stop, hint)

        def check_sorted_list(l):
            l = self.array_factory(l)
            for key in (l[5], l[15], l[0], -1000, l[-1], 1000):
                check_all_hints(l, key, 0, n)
                check_all_hints(l, key, 1, n - 1)
                check_all_hints(l, key, 8, n - 8)

        l = self.sorted_list(n, offset=100)
        check_sorted_list(l)
        l = self.dupsorted_list(n, offset=100)
        check_sorted_list(l)

    def test_merge_compute_minrun(self):
        f = self.timsort.merge_compute_minrun

        for i in range(0, 64):
            self.assertEqual(f(i), i)
        for i in range(6, 63):
            if 2**i > sys.maxsize:
                break
            self.assertEqual(f(2**i), 32)
        for i in self.fibo():
            if i < 64:
                continue
            if i >= sys.maxsize:
                break
            k = f(i)
            self.assertGreaterEqual(k, 32)
            self.assertLessEqual(k, 64)
            if i > 500:
                # i/k is close to, but strictly less than, an exact power of 2
                quot = i // k
                p = 2 ** utils.bit_length(quot)
                self.assertLess(quot, p)
                self.assertGreaterEqual(quot, 0.9 * p)

    def check_merge_lo_hi(self, func, a, b):
        na = len(a)
        nb = len(b)

        # Add sentinels at start and end, to check they weren't moved
        orig_keys = [42] + a + b + [-42]
        keys = self.array_factory(orig_keys)
        ms = self.merge_init(keys)
        ssa = 1
        ssb = ssa + na

        #new_ms = func(ms, keys, [], ssa, na, ssb, nb)
        new_ms = func(ms, keys, keys, ssa, na, ssb, nb)
        self.assertEqual(keys[0], orig_keys[0])
        self.assertEqual(keys[-1], orig_keys[-1])
        self.assertSorted(orig_keys[1:-1], keys[1:-1])
        # Check the MergeState result
        self.assertGreaterEqual(len(new_ms.keys), len(ms.keys))
        self.assertGreaterEqual(len(new_ms.values), len(ms.values))
        self.assertIs(new_ms.pending, ms.pending)
        self.assertGreaterEqual(new_ms.min_gallop, 1)

    def test_merge_lo_hi(self):
        f_lo = self.timsort.merge_lo
        f_hi = self.timsort.merge_hi

        # The larger sizes exercise galloping
        for (na, nb) in [(12, 16), (40, 40), (100, 110), (1000, 1100)]:
            for a, b in itertools.product(self.make_sample_sorted_lists(na),
                                          self.make_sample_sorted_lists(nb)):
                self.check_merge_lo_hi(f_lo, a, b)
                self.check_merge_lo_hi(f_hi, b, a)

    def check_merge_at(self, a, b):
        f = self.timsort.merge_at
        # Prepare the array to be sorted
        na = len(a)
        nb = len(b)
        # Add sentinels at start and end, to check they weren't moved
        orig_keys = [42] + a + b + [-42]
        ssa = 1
        ssb = ssa + na

        stack_sentinel = MergeRun(-42, -42)

        def run_merge_at(ms, keys, i):
            new_ms = f(ms, keys, keys, i)
            self.assertEqual(keys[0], orig_keys[0])
            self.assertEqual(keys[-1], orig_keys[-1])
            self.assertSorted(orig_keys[1:-1], keys[1:-1])
            # Check stack state
            self.assertIs(new_ms.pending, ms.pending)
            self.assertEqual(ms.pending[i], (ssa, na + nb))
            self.assertEqual(ms.pending[0], stack_sentinel)
            return new_ms

        # First check with i == len(stack) - 2
        keys = self.array_factory(orig_keys)
        ms = self.merge_init(keys)
        # Push sentinel on stack, to check it wasn't touched
        ms = self.timsort.merge_append(ms, stack_sentinel)
        i = ms.n
        ms = self.timsort.merge_append(ms, MergeRun(ssa, na))
        ms = self.timsort.merge_append(ms, MergeRun(ssb, nb))
        ms = run_merge_at(ms, keys, i)
        self.assertEqual(ms.n, i + 1)

        # Now check with i == len(stack) - 3
        keys = self.array_factory(orig_keys)
        ms = self.merge_init(keys)
        # Push sentinel on stack, to check it wasn't touched
        ms = self.timsort.merge_append(ms, stack_sentinel)
        i = ms.n
        ms = self.timsort.merge_append(ms, MergeRun(ssa, na))
        ms = self.timsort.merge_append(ms, MergeRun(ssb, nb))
        # A last run (trivial here)
        last_run = MergeRun(ssb + nb, 1)
        ms = self.timsort.merge_append(ms, last_run)
        ms = run_merge_at(ms, keys, i)
        self.assertEqual(ms.n, i + 2)
        self.assertEqual(ms.pending[ms.n - 1], last_run)

    def test_merge_at(self):
        # The larger sizes exercise galloping
        for (na, nb) in [(12, 16), (40, 40), (100, 110), (500, 510)]:
            for a, b in itertools.product(self.make_sample_sorted_lists(na),
                                          self.make_sample_sorted_lists(nb)):
                self.check_merge_at(a, b)
                self.check_merge_at(b, a)

    def test_merge_force_collapse(self):
        f = self.timsort.merge_force_collapse

        # Test with runs of ascending sizes, then descending sizes
        sizes_list = [(8, 10, 15, 20)]
        sizes_list.append(sizes_list[0][::-1])

        for sizes in sizes_list:
            for chunks in itertools.product(*(self.make_sample_sorted_lists(n)
                                              for n in sizes)):
                # Create runs of the given sizes
                orig_keys = sum(chunks, [])
                keys = self.array_factory(orig_keys)
                ms = self.merge_init(keys)
                pos = 0
                for c in chunks:
                    ms = self.timsort.merge_append(ms, MergeRun(pos, len(c)))
                    pos += len(c)
                # Sanity check
                self.assertEqual(sum(ms.pending[ms.n - 1]), len(keys))
                # Now merge the runs
                ms = f(ms, keys, keys)
                # Remaining run is the whole list
                self.assertEqual(ms.n, 1)
                self.assertEqual(ms.pending[0], MergeRun(0, len(keys)))
                # The list is now sorted
                self.assertSorted(orig_keys, keys)

    def test_run_timsort(self):
        f = self.timsort.run_timsort

        for size_factor in (1, 10):
            # Make lists to be sorted from three chunks of different kinds.
            sizes = (15, 30, 20)

            all_lists = [self.make_sample_lists(n * size_factor) for n in sizes]
            for chunks in itertools.product(*all_lists):
                orig_keys = sum(chunks, [])
                keys = self.array_factory(orig_keys)
                f(keys)
                # The list is now sorted
                self.assertSorted(orig_keys, keys)

    def test_run_timsort_with_values(self):
        # Run timsort, but also with a values array
        f = self.timsort.run_timsort_with_values

        for size_factor in (1, 5):
            chunk_size = 80 * size_factor
            a = self.dupsorted_list(chunk_size)
            b = self.duprandom_list(chunk_size)
            c = self.revsorted_list(chunk_size)
            orig_keys = a + b + c
            orig_values = list(range(1000, 1000 + len(orig_keys)))

            keys = self.array_factory(orig_keys)
            values = self.array_factory(orig_values)
            f(keys, values)
            # This checks sort stability
            self.assertSortedValues(orig_keys, orig_values, keys, values)


class TestTimsortPurePython(BaseTimsortTest, TestCase):

    timsort = py_list_timsort

    # Much faster than a Numpy array in pure Python
    array_factory = list


class TestTimsortArraysPurePython(BaseTimsortTest, TestCase):

    timsort = py_array_timsort

    def array_factory(self, lst):
        return np.array(lst, dtype=np.int32)


class JITTimsortMixin(object):

    timsort = jit_array_timsort

    test_merge_at = None
    test_merge_force_collapse = None

    def wrap_with_mergestate(self, timsort, func, _cache={}):
        """
        Wrap *func* into another compiled function inserting a runtime-created
        mergestate as the first function argument.
        """
        key = timsort, func
        if key in _cache:
            return _cache[key]

        merge_init = timsort.merge_init

        @timsort.compile
        def wrapper(keys, values, *args):
            ms = merge_init(keys)
            res = func(ms, keys, values, *args)
            return res

        _cache[key] = wrapper
        return wrapper


class TestTimsortArrays(JITTimsortMixin, BaseTimsortTest, TestCase):

    def array_factory(self, lst):
        return np.array(lst, dtype=np.int32)

    def check_merge_lo_hi(self, func, a, b):
        na = len(a)
        nb = len(b)

        func = self.wrap_with_mergestate(self.timsort, func)

        # Add sentinels at start and end, to check they weren't moved
        orig_keys = [42] + a + b + [-42]
        keys = self.array_factory(orig_keys)
        ssa = 1
        ssb = ssa + na

        new_ms = func(keys, keys, ssa, na, ssb, nb)
        self.assertEqual(keys[0], orig_keys[0])
        self.assertEqual(keys[-1], orig_keys[-1])
        self.assertSorted(orig_keys[1:-1], keys[1:-1])



class BaseQuicksortTest(BaseSortingTest):

    # NOTE these tests assume a non-argsort quicksort.

    def test_insertion_sort(self):
        n = 20
        def check(l, n):
            res = self.array_factory([9999] + l + [-9999])
            f(res, res, 1, n)
            self.assertEqual(res[0], 9999)
            self.assertEqual(res[-1], -9999)
            self.assertSorted(l, res[1:-1])

        f = self.quicksort.insertion_sort
        l = self.sorted_list(n)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.initially_sorted_list(n, n//2)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.random_list(n)
        check(l, n)
        l = self.duprandom_list(n)
        check(l, n)

    def test_partition(self):
        n = 20
        def check(l, n):
            res = self.array_factory([9999] + l + [-9999])
            index = f(res, res, 1, n)
            self.assertEqual(res[0], 9999)
            self.assertEqual(res[-1], -9999)
            pivot = res[index]
            for i in range(1, index):
                self.assertLessEqual(res[i], pivot)
            for i in range(index + 1, n):
                self.assertGreaterEqual(res[i], pivot)

        f = self.quicksort.partition
        l = self.sorted_list(n)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.initially_sorted_list(n, n//2)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.random_list(n)
        check(l, n)
        l = self.duprandom_list(n)
        check(l, n)

    def test_partition3(self):
        # Test the unused partition3() function
        n = 20
        def check(l, n):
            res = self.array_factory([9999] + l + [-9999])
            lt, gt = f(res, 1, n)
            self.assertEqual(res[0], 9999)
            self.assertEqual(res[-1], -9999)
            pivot = res[lt]
            for i in range(1, lt):
                self.assertLessEqual(res[i], pivot)
            for i in range(lt, gt + 1):
                self.assertEqual(res[i], pivot)
            for i in range(gt + 1, n):
                self.assertGreater(res[i], pivot)

        f = self.quicksort.partition3
        l = self.sorted_list(n)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.initially_sorted_list(n, n//2)
        check(l, n)
        l = self.revsorted_list(n)
        check(l, n)
        l = self.random_list(n)
        check(l, n)
        l = self.duprandom_list(n)
        check(l, n)

    def test_run_quicksort(self):
        f = self.quicksort.run_quicksort

        for size_factor in (1, 5):
            # Make lists to be sorted from two chunks of different kinds.
            sizes = (15, 20)

            all_lists = [self.make_sample_lists(n * size_factor) for n in sizes]
            for chunks in itertools.product(*all_lists):
                orig_keys = sum(chunks, [])
                keys = self.array_factory(orig_keys)
                f(keys)
                # The list is now sorted
                self.assertSorted(orig_keys, keys)

    def test_run_quicksort_lt(self):
        def lt(a, b):
            return a > b

        f = self.make_quicksort(lt=lt).run_quicksort

        for size_factor in (1, 5):
            # Make lists to be sorted from two chunks of different kinds.
            sizes = (15, 20)

            all_lists = [self.make_sample_lists(n * size_factor) for n in sizes]
            for chunks in itertools.product(*all_lists):
                orig_keys = sum(chunks, [])
                keys = self.array_factory(orig_keys)
                f(keys)
                # The list is now rev-sorted
                self.assertSorted(orig_keys, keys[::-1])

        # An imperfect comparison function, as LT(a, b) does not imply not LT(b, a).
        # The sort should handle it gracefully.
        def lt_floats(a, b):
            return math.isnan(b) or a < b

        f = self.make_quicksort(lt=lt_floats).run_quicksort

        np.random.seed(42)
        for size in (5, 20, 50, 500):
            orig = np.random.random(size=size) * 100
            orig[np.random.random(size=size) < 0.1] = float('nan')
            orig_keys = list(orig)
            keys = self.array_factory(orig_keys)
            f(keys)
            non_nans = orig[~np.isnan(orig)]
            # Non-NaNs are sorted at the front
            self.assertSorted(non_nans, keys[:len(non_nans)])


class TestQuicksortPurePython(BaseQuicksortTest, TestCase):

    quicksort = py_quicksort
    make_quicksort = staticmethod(make_py_quicksort)

    # Much faster than a Numpy array in pure Python
    array_factory = list


class TestQuicksortArrays(BaseQuicksortTest, TestCase):

    quicksort = jit_quicksort
    make_quicksort = staticmethod(make_jit_quicksort)

    def array_factory(self, lst):
        return np.array(lst, dtype=np.float64)

class TestQuicksortMultidimensionalArrays(BaseSortingTest, TestCase):

    quicksort = make_jit_quicksort(is_np_array=True)
    make_quicksort = staticmethod(make_jit_quicksort)

    def assertSorted(self, orig, result):
        self.assertEqual(orig.shape, result.shape)
        self.assertPreciseEqual(orig, result)

    def array_factory(self, lst, shape=None):
        array = np.array(lst, dtype=np.float64)
        if shape is None:
            return array.reshape(-1, array.shape[0])
        else:
            return array.reshape(shape)

    def get_shapes(self, n):
        shapes = []
        if n == 1:
            return shapes

        for i in range(2, int(math.sqrt(n)) + 1):
            if n % i == 0:
                shapes.append((n // i, i))
                shapes.append((i, n // i))
                _shapes = self.get_shapes(n // i)
                for _shape in _shapes:
                    shapes.append((i,) + _shape)
                    shapes.append(_shape + (i,))

        return shapes

    def test_run_quicksort(self):
        f = self.quicksort.run_quicksort

        for size_factor in (1, 5):
            # Make lists to be sorted from two chunks of different kinds.
            sizes = (15, 20)

            all_lists = [self.make_sample_lists(n * size_factor) for n in sizes]
            for chunks in itertools.product(*all_lists):
                orig_keys = sum(chunks, [])
                shape_list = self.get_shapes(len(orig_keys))
                shape_list.append(None)
                for shape in shape_list:
                    keys = self.array_factory(orig_keys, shape=shape)
                    keys_copy = self.array_factory(orig_keys, shape=shape)
                    f(keys)
                    keys_copy.sort()
                    # The list is now sorted
                    self.assertSorted(keys_copy, keys)

    def test_run_quicksort_lt(self):
        def lt(a, b):
            return a > b

        f = self.make_quicksort(lt=lt, is_np_array=True).run_quicksort

        for size_factor in (1, 5):
            # Make lists to be sorted from two chunks of different kinds.
            sizes = (15, 20)

            all_lists = [self.make_sample_lists(n * size_factor) for n in sizes]
            for chunks in itertools.product(*all_lists):
                orig_keys = sum(chunks, [])
                shape_list = self.get_shapes(len(orig_keys))
                shape_list.append(None)
                for shape in shape_list:
                    keys = self.array_factory(orig_keys, shape=shape)
                    keys_copy = -self.array_factory(orig_keys, shape=shape)
                    f(keys)
                    # The list is now rev-sorted
                    keys_copy.sort()
                    keys_copy = -keys_copy
                    self.assertSorted(keys_copy, keys)

        # An imperfect comparison function, as LT(a, b) does not imply not LT(b, a).
        # The sort should handle it gracefully.
        def lt_floats(a, b):
            return math.isnan(b) or a < b

        f = self.make_quicksort(lt=lt_floats, is_np_array=True).run_quicksort

        np.random.seed(42)
        for size in (5, 20, 50, 500):
            orig = np.random.random(size=size) * 100
            orig[np.random.random(size=size) < 0.1] = float('nan')
            orig_keys = list(orig)
            shape_list = self.get_shapes(len(orig_keys))
            shape_list.append(None)
            for shape in shape_list:
                keys = self.array_factory(orig_keys, shape=shape)
                keys_copy = self.array_factory(orig_keys, shape=shape)
                f(keys)
                keys_copy.sort()
                # Non-NaNs are sorted at the front
                self.assertSorted(keys_copy, keys)

class TestNumpySort(TestCase):

    def setUp(self):
        np.random.seed(42)

    def int_arrays(self):
        for size in (5, 20, 50, 500):
            yield np.random.randint(99, size=size)

    def float_arrays(self):
        for size in (5, 20, 50, 500):
            yield np.random.random(size=size) * 100
        # Now with NaNs.  Numpy sorts them at the end.
        for size in (5, 20, 50, 500):
            orig = np.random.random(size=size) * 100
            orig[np.random.random(size=size) < 0.1] = float('nan')
            yield orig
        # 90% of values are NaNs.
        for size in (50, 500):
            orig = np.random.random(size=size) * 100
            orig[np.random.random(size=size) < 0.9] = float('nan')
            yield orig

    def has_duplicates(self, arr):
        """
        Whether the array has duplicates.  Takes NaNs into account.
        """
        if np.count_nonzero(np.isnan(arr)) > 1:
            return True
        if np.unique(arr).size < arr.size:
            return True
        return False

    def check_sort_inplace(self, pyfunc, cfunc, val):
        expected = copy.copy(val)
        got = copy.copy(val)
        pyfunc(expected)
        cfunc(got)
        self.assertPreciseEqual(got, expected)

    def check_sort_copy(self, pyfunc, cfunc, val):
        orig = copy.copy(val)
        expected = pyfunc(val)
        got = cfunc(val)
        self.assertPreciseEqual(got, expected)
        # The original wasn't mutated
        self.assertPreciseEqual(val, orig)

    def check_argsort(self, pyfunc, cfunc, val, kwargs={}):
        orig = copy.copy(val)
        expected = pyfunc(val, **kwargs)
        got = cfunc(val, **kwargs)
        self.assertPreciseEqual(orig[got], np.sort(orig),
                                msg="the array wasn't argsorted")
        # Numba and Numpy results may differ if there are duplicates
        # in the array
        if not self.has_duplicates(orig):
            self.assertPreciseEqual(got, expected)
        # The original wasn't mutated
        self.assertPreciseEqual(val, orig)

    def test_array_sort_int(self):
        pyfunc = sort_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for orig in self.int_arrays():
            self.check_sort_inplace(pyfunc, cfunc, orig)

    def test_array_sort_float(self):
        pyfunc = sort_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for orig in self.float_arrays():
            self.check_sort_inplace(pyfunc, cfunc, orig)

    def test_np_sort_int(self):
        pyfunc = np_sort_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for orig in self.int_arrays():
            self.check_sort_copy(pyfunc, cfunc, orig)

    def test_np_sort_float(self):
        pyfunc = np_sort_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for size in (5, 20, 50, 500):
            orig = np.random.random(size=size) * 100
            orig[np.random.random(size=size) < 0.1] = float('nan')
            self.check_sort_copy(pyfunc, cfunc, orig)

    def test_argsort_int(self):
        def check(pyfunc):
            cfunc = jit(nopython=True)(pyfunc)
            for orig in self.int_arrays():
                self.check_argsort(pyfunc, cfunc, orig)

        check(argsort_usecase)
        check(np_argsort_usecase)

    def test_argsort_kind_int(self):
        def check(pyfunc, is_stable):
            cfunc = jit(nopython=True)(pyfunc)
            for orig in self.int_arrays():
                self.check_argsort(pyfunc, cfunc, orig,
                                   dict(is_stable=is_stable))

        check(argsort_kind_usecase, is_stable=True)
        check(np_argsort_kind_usecase, is_stable=True)
        check(argsort_kind_usecase, is_stable=False)
        check(np_argsort_kind_usecase, is_stable=False)

    def test_argsort_float(self):
        def check(pyfunc):
            cfunc = jit(nopython=True)(pyfunc)
            for orig in self.float_arrays():
                self.check_argsort(pyfunc, cfunc, orig)

        check(argsort_usecase)
        check(np_argsort_usecase)

    def test_argsort_float(self):
        def check(pyfunc, is_stable):
            cfunc = jit(nopython=True)(pyfunc)
            for orig in self.float_arrays():
                self.check_argsort(pyfunc, cfunc, orig,
                                   dict(is_stable=is_stable))

        check(argsort_kind_usecase, is_stable=True)
        check(np_argsort_kind_usecase, is_stable=True)
        check(argsort_kind_usecase, is_stable=False)
        check(np_argsort_kind_usecase, is_stable=False)

    def test_bad_array(self):
        cfunc = jit(nopython=True)(np_sort_usecase)
        msg = '.*Argument "a" must be array-like.*'
        with self.assertRaisesRegex(errors.TypingError, msg) as raises:
            cfunc(None)


class TestPythonSort(TestCase):

    def test_list_sort(self):
        pyfunc = list_sort_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for size in (20, 50, 500):
            orig, ret = cfunc(size)
            self.assertEqual(sorted(orig), ret)
            self.assertNotEqual(orig, ret)   # sanity check

    def test_list_sort_reverse(self):
        pyfunc = list_sort_reverse_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for size in (20, 50, 500):
            for b in (False, True):
                orig, ret = cfunc(size, b)
                self.assertEqual(sorted(orig, reverse=b), ret)
                self.assertNotEqual(orig, ret)   # sanity check

    def test_sorted(self):
        pyfunc = sorted_usecase
        cfunc = jit(nopython=True)(pyfunc)

        for size in (20, 50, 500):
            orig = np.random.random(size=size) * 100
            expected = sorted(orig)
            got = cfunc(orig)
            self.assertPreciseEqual(got, expected)
            self.assertNotEqual(list(orig), got)   # sanity check

    def test_sorted_reverse(self):
        pyfunc = sorted_reverse_usecase
        cfunc = jit(nopython=True)(pyfunc)
        size = 20

        orig = np.random.random(size=size) * 100
        for b in (False, True):
            expected = sorted(orig, reverse=b)
            got = cfunc(orig, b)
            self.assertPreciseEqual(got, expected)
            self.assertNotEqual(list(orig), got)   # sanity check


class TestMergeSort(TestCase):
    def setUp(self):
        np.random.seed(321)

    def check_argsort_stable(self, sorter, low, high, count):
        # make data with high possibility of duplicated key
        data = np.random.randint(low, high, count)
        expect = np.argsort(data, kind='mergesort')
        got = sorter(data)
        np.testing.assert_equal(expect, got)

    def test_argsort_stable(self):
        arglist = [
            (-2, 2, 5),
            (-5, 5, 10),
            (0, 10, 101),
            (0, 100, 1003),
        ]
        imp = make_jit_mergesort(is_argsort=True)
        toplevel = imp.run_mergesort
        sorter = njit(lambda arr: toplevel(arr))
        for args in arglist:
            self.check_argsort_stable(sorter, *args)


nop_compiler = lambda x:x


class TestSortSlashSortedWithKey(MemoryLeakMixin, TestCase):

    def test_01(self):

        a = [3, 1, 4, 1, 5, 9]

        @njit
        def external_key(z):
            return 1. / z

        @njit
        def foo(x, key=None):
            new_x = x[:]
            new_x.sort(key=key)
            return sorted(x[:], key=key), new_x

        self.assertPreciseEqual(foo(a[:]), foo.py_func(a[:]))
        self.assertPreciseEqual(foo(a[:], external_key),
                                foo.py_func(a[:], external_key))

    def test_02(self):

        a = [3, 1, 4, 1, 5, 9]

        @njit
        def foo(x):
            def closure_key(z):
                return 1. / z
            new_x = x[:]
            new_x.sort(key=closure_key)
            return sorted(x[:], key=closure_key), new_x

        self.assertPreciseEqual(foo(a[:]), foo.py_func(a[:]))

    def test_03(self):

        a = [3, 1, 4, 1, 5, 9]

        def gen(compiler):

            @compiler
            def bar(x, func):
                new_x = x[:]
                new_x.sort(key=func)
                return sorted(x[:], key=func), new_x

            @compiler
            def foo(x):
                def closure_escapee_key(z):
                    return 1. / z
                return bar(x, closure_escapee_key)

            return foo

        self.assertPreciseEqual(gen(njit)(a[:]), gen(nop_compiler)(a[:]))

    def test_04(self):

        a = ['a','b','B','b','C','A']

        @njit
        def external_key(z):
            return z.upper()

        @njit
        def foo(x, key=None):
            new_x = x[:]
            new_x.sort(key=key)
            return sorted(x[:], key=key), new_x

        self.assertPreciseEqual(foo(a[:]), foo.py_func(a[:]))
        self.assertPreciseEqual(foo(a[:], external_key),
                                foo.py_func(a[:], external_key))

    def test_05(self):

        a = ['a','b','B','b','C','A']

        @njit
        def external_key(z):
            return z.upper()

        @njit
        def foo(x, key=None, reverse=False):
            new_x = x[:]
            new_x.sort(key=key, reverse=reverse)
            return (sorted(x[:], key=key, reverse=reverse), new_x)

        for key, rev in itertools.product((None, external_key),
                                          (True, False, 1, -12, 0)):
            self.assertPreciseEqual(foo(a[:], key, rev),
                                    foo.py_func(a[:], key, rev))

    def test_optional_on_key(self):
        a = [3, 1, 4, 1, 5, 9]

        @njit
        def foo(x, predicate):
            if predicate:
                def closure_key(z):
                    return 1. / z
            else:
                closure_key = None

            new_x = x[:]
            new_x.sort(key=closure_key)

            return (sorted(x[:], key=closure_key), new_x)

        with self.assertRaises(errors.TypingError) as raises:
            TF = True
            foo(a[:], TF)

        msg = "Key must concretely be None or a Numba JIT compiled function"
        self.assertIn(msg, str(raises.exception))

    def test_exceptions_sorted(self):

        @njit
        def foo_sorted(x, key=None, reverse=False):
            return sorted(x[:], key=key, reverse=reverse)

        @njit
        def foo_sort(x, key=None, reverse=False):
            new_x = x[:]
            new_x.sort(key=key, reverse=reverse)
            return new_x

        @njit
        def external_key(z):
            return 1. / z

        a = [3, 1, 4, 1, 5, 9]

        for impl in (foo_sort, foo_sorted):

            # check illegal key
            with self.assertRaises(errors.TypingError) as raises:
                impl(a, key="illegal")

            expect = "Key must be None or a Numba JIT compiled function"
            self.assertIn(expect, str(raises.exception))

            # check illegal reverse
            with self.assertRaises(errors.TypingError) as raises:
                impl(a, key=external_key, reverse="go backwards")

            expect = "an integer is required for 'reverse'"
            self.assertIn(expect, str(raises.exception))


class TestArrayArgsort(MemoryLeakMixin, TestCase):
    """Tests specific to array.argsort"""

    def test_exceptions(self):

        @njit
        def nonliteral_kind(kind):
            np.arange(5).argsort(kind=kind)

        # check non-literal kind
        with self.assertRaises(errors.TypingError) as raises:
            # valid spelling but not literal
            nonliteral_kind('quicksort')

        expect = '"kind" must be a string literal'
        self.assertIn(expect, str(raises.exception))

        @njit
        def unsupported_kwarg():
            np.arange(5).argsort(foo='')

        with self.assertRaises(errors.TypingError) as raises:
            unsupported_kwarg()

        expect = "Unsupported keywords: ['foo']"
        self.assertIn(expect, str(raises.exception))


if __name__ == '__main__':
    unittest.main()