distributions.py 19.8 KB
Newer Older
dugupeiwen's avatar
dugupeiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
"""
Algorithmic implementations for generating different types
of random distributions.
"""

import numpy as np

from numba.core.extending import register_jitable
from numba.np.random._constants import (wi_double, ki_double,
                                        ziggurat_nor_r, fi_double,
                                        wi_float, ki_float,
                                        ziggurat_nor_inv_r_f,
                                        ziggurat_nor_r_f, fi_float,
                                        we_double, ke_double,
                                        ziggurat_exp_r, fe_double,
                                        we_float, ke_float,
                                        ziggurat_exp_r_f, fe_float,
                                        INT64_MAX, ziggurat_nor_inv_r)
from numba.np.random.generator_core import (next_double, next_float,
                                            next_uint32, next_uint64)
from numba import float32, int64
# All of the following implementations are direct translations from:
# https://github.com/numpy/numpy/blob/7cfef93c77599bd387ecc6a15d186c5a46024dac/numpy/random/src/distributions/distributions.c


@register_jitable
def np_log1p(x):
    return np.log1p(x)


@register_jitable
def np_log1pf(x):
    return np.log1p(float32(x))


@register_jitable
def random_rayleigh(bitgen, mode):
    return mode * np.sqrt(2.0 * random_standard_exponential(bitgen))


@register_jitable
def np_expm1(x):
    return np.expm1(x)


@register_jitable
def random_standard_normal(bitgen):
    while 1:
        r = next_uint64(bitgen)
        idx = r & 0xff
        r >>= 8
        sign = r & 0x1
        rabs = (r >> 1) & 0x000fffffffffffff
        x = rabs * wi_double[idx]
        if (sign & 0x1):
            x = -x
        if rabs < ki_double[idx]:
            return x
        if idx == 0:
            while 1:
                xx = -ziggurat_nor_inv_r * np.log1p(-next_double(bitgen))
                yy = -np.log1p(-next_double(bitgen))
                if (yy + yy > xx * xx):
                    if ((rabs >> 8) & 0x1):
                        return -(ziggurat_nor_r + xx)
                    else:
                        return ziggurat_nor_r + xx
        else:
            if (((fi_double[idx - 1] - fi_double[idx]) *
                    next_double(bitgen) + fi_double[idx]) <
                    np.exp(-0.5 * x * x)):
                return x


@register_jitable
def random_standard_normal_f(bitgen):
    while 1:
        r = next_uint32(bitgen)
        idx = r & 0xff
        sign = (r >> 8) & 0x1
        rabs = (r >> 9) & 0x0007fffff
        x = float32(float32(rabs) * wi_float[idx])
        if (sign & 0x1):
            x = -x
        if (rabs < ki_float[idx]):
            return x
        if (idx == 0):
            while 1:
                xx = float32(-ziggurat_nor_inv_r_f *
                             np_log1pf(-next_float(bitgen)))
                yy = float32(-np_log1pf(-next_float(bitgen)))
                if (float32(yy + yy) > float32(xx * xx)):
                    if ((rabs >> 8) & 0x1):
                        return -float32(ziggurat_nor_r_f + xx)
                    else:
                        return float32(ziggurat_nor_r_f + xx)
        else:
            if (((fi_float[idx - 1] - fi_float[idx]) * next_float(bitgen) +
                 fi_float[idx]) < float32(np.exp(-float32(0.5) * x * x))):
                return x


@register_jitable
def random_standard_exponential(bitgen):
    while 1:
        ri = next_uint64(bitgen)
        ri >>= 3
        idx = ri & 0xFF
        ri >>= 8
        x = ri * we_double[idx]
        if (ri < ke_double[idx]):
            return x
        else:
            if idx == 0:
                return ziggurat_exp_r - np_log1p(-next_double(bitgen))
            elif ((fe_double[idx - 1] - fe_double[idx]) * next_double(bitgen) +
                  fe_double[idx] < np.exp(-x)):
                return x


@register_jitable
def random_standard_exponential_f(bitgen):
    while 1:
        ri = next_uint32(bitgen)
        ri >>= 1
        idx = ri & 0xFF
        ri >>= 8
        x = float32(float32(ri) * we_float[idx])
        if (ri < ke_float[idx]):
            return x
        else:
            if (idx == 0):
                return float32(ziggurat_exp_r_f -
                               float32(np_log1pf(-next_float(bitgen))))
            elif ((fe_float[idx - 1] - fe_float[idx]) * next_float(bitgen) +
                  fe_float[idx] < float32(np.exp(float32(-x)))):
                return x


@register_jitable
def random_standard_exponential_inv(bitgen):
    return -np_log1p(-next_double(bitgen))


@register_jitable
def random_standard_exponential_inv_f(bitgen):
    return -np.log(float32(1.0) - next_float(bitgen))


@register_jitable
def random_standard_gamma(bitgen, shape):
    if (shape == 1.0):
        return random_standard_exponential(bitgen)
    elif (shape == 0.0):
        return 0.0
    elif (shape < 1.0):
        while 1:
            U = next_double(bitgen)
            V = random_standard_exponential(bitgen)
            if (U <= 1.0 - shape):
                X = pow(U, 1. / shape)
                if (X <= V):
                    return X
            else:
                Y = -np.log((1 - U) / shape)
                X = pow(1.0 - shape + shape * Y, 1. / shape)
                if (X <= (V + Y)):
                    return X
    else:
        b = shape - 1. / 3.
        c = 1. / np.sqrt(9 * b)
        while 1:
            while 1:
                X = random_standard_normal(bitgen)
                V = 1.0 + c * X
                if (V > 0.0):
                    break

            V = V * V * V
            U = next_double(bitgen)
            if (U < 1.0 - 0.0331 * (X * X) * (X * X)):
                return (b * V)

            if (np.log(U) < 0.5 * X * X + b * (1. - V + np.log(V))):
                return (b * V)


@register_jitable
def random_standard_gamma_f(bitgen, shape):
    f32_one = float32(1.0)
    shape = float32(shape)
    if (shape == f32_one):
        return random_standard_exponential_f(bitgen)
    elif (shape == float32(0.0)):
        return float32(0.0)
    elif (shape < f32_one):
        while 1:
            U = next_float(bitgen)
            V = random_standard_exponential_f(bitgen)
            if (U <= f32_one - shape):
                X = float32(pow(U, float32(f32_one / shape)))
                if (X <= V):
                    return X
            else:
                Y = float32(-np.log(float32((f32_one - U) / shape)))
                X = float32(pow(f32_one - shape + float32(shape * Y),
                            float32(f32_one / shape)))
                if (X <= (V + Y)):
                    return X
    else:
        b = shape - f32_one / float32(3.0)
        c = float32(f32_one / float32(np.sqrt(float32(9.0) * b)))
        while 1:
            while 1:
                X = float32(random_standard_normal_f(bitgen))
                V = float32(f32_one + c * X)
                if (V > float32(0.0)):
                    break

            V = float32(V * V * V)
            U = next_float(bitgen)
            if (U < f32_one - float32(0.0331) * (X * X) * (X * X)):
                return float32(b * V)

            if (np.log(U) < float32(0.5) * X * X + b *
                    (f32_one - V + np.log(V))):
                return float32(b * V)


@register_jitable
def random_normal(bitgen, loc, scale):
    scaled_normal = scale * random_standard_normal(bitgen)
    return loc + scaled_normal


@register_jitable
def random_normal_f(bitgen, loc, scale):
    scaled_normal = float32(scale * random_standard_normal_f(bitgen))
    return float32(loc + scaled_normal)


@register_jitable
def random_exponential(bitgen, scale):
    return scale * random_standard_exponential(bitgen)


@register_jitable
def random_uniform(bitgen, lower, range):
    scaled_uniform = range * next_double(bitgen)
    return lower + scaled_uniform


@register_jitable
def random_gamma(bitgen, shape, scale):
    return scale * random_standard_gamma(bitgen, shape)


@register_jitable
def random_gamma_f(bitgen, shape, scale):
    return float32(scale * random_standard_gamma_f(bitgen, shape))


@register_jitable
def random_beta(bitgen, a, b):
    if a <= 1.0 and b <= 1.0:
        while 1:
            U = next_double(bitgen)
            V = next_double(bitgen)
            X = pow(U, 1.0 / a)
            Y = pow(V, 1.0 / b)
            XpY = X + Y
            if XpY <= 1.0 and XpY > 0.0:
                if (X + Y > 0):
                    return X / XpY
                else:
                    logX = np.log(U) / a
                    logY = np.log(V) / b
                    logM = min(logX, logY)
                    logX -= logM
                    logY -= logM

                    return np.exp(logX - np.log(np.exp(logX) + np.exp(logY)))
    else:
        Ga = random_standard_gamma(bitgen, a)
        Gb = random_standard_gamma(bitgen, b)
        return Ga / (Ga + Gb)


@register_jitable
def random_chisquare(bitgen, df):
    return 2.0 * random_standard_gamma(bitgen, df / 2.0)


@register_jitable
def random_f(bitgen, dfnum, dfden):
    return ((random_chisquare(bitgen, dfnum) * dfden) /
            (random_chisquare(bitgen, dfden) * dfnum))


@register_jitable
def random_standard_cauchy(bitgen):
    return random_standard_normal(bitgen) / random_standard_normal(bitgen)


@register_jitable
def random_pareto(bitgen, a):
    return np_expm1(random_standard_exponential(bitgen) / a)


@register_jitable
def random_weibull(bitgen, a):
    if (a == 0.0):
        return 0.0
    return pow(random_standard_exponential(bitgen), 1. / a)


@register_jitable
def random_power(bitgen, a):
    return pow(-np_expm1(-random_standard_exponential(bitgen)), 1. / a)


@register_jitable
def random_laplace(bitgen, loc, scale):
    U = next_double(bitgen)
    while U <= 0:
        U = next_double(bitgen)
    if (U >= 0.5):
        U = loc - scale * np.log(2.0 - U - U)
    elif (U > 0.0):
        U = loc + scale * np.log(U + U)
    return U


@register_jitable
def random_logistic(bitgen, loc, scale):
    U = next_double(bitgen)
    while U <= 0.0:
        U = next_double(bitgen)
    return loc + scale * np.log(U / (1.0 - U))


@register_jitable
def random_lognormal(bitgen, mean, sigma):
    return np.exp(random_normal(bitgen, mean, sigma))


@register_jitable
def random_standard_t(bitgen, df):
    num = random_standard_normal(bitgen)
    denom = random_standard_gamma(bitgen, df / 2)
    return np.sqrt(df / 2) * num / np.sqrt(denom)


@register_jitable
def random_wald(bitgen, mean, scale):
    mu_2l = mean / (2 * scale)
    Y = random_standard_normal(bitgen)
    Y = mean * Y * Y
    X = mean + mu_2l * (Y - np.sqrt(4 * scale * Y + Y * Y))
    U = next_double(bitgen)
    if (U <= mean / (mean + X)):
        return X
    else:
        return mean * mean / X


@register_jitable
def random_geometric_search(bitgen, p):
    X = 1
    sum = prod = p
    q = 1.0 - p
    U = next_double(bitgen)
    while (U > sum):
        prod *= q
        sum += prod
        X = X + 1
    return X


@register_jitable
def random_geometric_inversion(bitgen, p):
    return np.ceil(-random_standard_exponential(bitgen) / np.log1p(-p))


@register_jitable
def random_geometric(bitgen, p):
    if (p >= 0.333333333333333333333333):
        return random_geometric_search(bitgen, p)
    else:
        return random_geometric_inversion(bitgen, p)


@register_jitable
def random_zipf(bitgen, a):
    am1 = a - 1.0
    b = pow(2.0, am1)
    while 1:
        U = 1.0 - next_double(bitgen)
        V = next_double(bitgen)
        X = np.floor(pow(U, -1.0 / am1))
        if (X > INT64_MAX or X < 1.0):
            continue

        T = pow(1.0 + 1.0 / X, am1)
        if (V * X * (T - 1.0) / (b - 1.0) <= T / b):
            return X


@register_jitable
def random_triangular(bitgen, left, mode,
                      right):
    base = right - left
    leftbase = mode - left
    ratio = leftbase / base
    leftprod = leftbase * base
    rightprod = (right - mode) * base

    U = next_double(bitgen)
    if (U <= ratio):
        return left + np.sqrt(U * leftprod)
    else:
        return right - np.sqrt((1.0 - U) * rightprod)


@register_jitable
def random_loggam(x):
    a = [8.333333333333333e-02, -2.777777777777778e-03,
         7.936507936507937e-04, -5.952380952380952e-04,
         8.417508417508418e-04, -1.917526917526918e-03,
         6.410256410256410e-03, -2.955065359477124e-02,
         1.796443723688307e-01, -1.39243221690590e+00]

    if ((x == 1.0) or (x == 2.0)):
        return 0.0
    elif (x < 7.0):
        n = int(7 - x)
    else:
        n = 0

    x0 = x + n
    x2 = (1.0 / x0) * (1.0 / x0)
    # /* log(2 * M_PI) */
    lg2pi = 1.8378770664093453e+00
    gl0 = a[9]

    for k in range(0, 9):
        gl0 *= x2
        gl0 += a[8 - k]

    gl = gl0 / x0 + 0.5 * lg2pi + (x0 - 0.5) * np.log(x0) - x0
    if (x < 7.0):
        for k in range(1, n + 1):
            gl = gl - np.log(x0 - 1.0)
            x0 = x0 - 1.0

    return gl


@register_jitable
def random_poisson_mult(bitgen, lam):
    enlam = np.exp(-lam)
    X = 0
    prod = 1.0
    while (1):
        U = next_double(bitgen)
        prod *= U
        if (prod > enlam):
            X += 1
        else:
            return X


@register_jitable
def random_poisson_ptrs(bitgen, lam):

    slam = np.sqrt(lam)
    loglam = np.log(lam)
    b = 0.931 + 2.53 * slam
    a = -0.059 + 0.02483 * b
    invalpha = 1.1239 + 1.1328 / (b - 3.4)
    vr = 0.9277 - 3.6224 / (b - 2)

    while (1):
        U = next_double(bitgen) - 0.5
        V = next_double(bitgen)
        us = 0.5 - np.fabs(U)
        k = int((2 * a / us + b) * U + lam + 0.43)
        if ((us >= 0.07) and (V <= vr)):
            return k

        if ((k < 0) or ((us < 0.013) and (V > us))):
            continue

        # /* log(V) == log(0.0) ok here */
        # /* if U==0.0 so that us==0.0, log is ok since always returns */
        if ((np.log(V) + np.log(invalpha) - np.log(a / (us * us) + b)) <=
           (-lam + k * loglam - random_loggam(k + 1))):
            return k


@register_jitable
def random_poisson(bitgen, lam):
    if (lam >= 10):
        return random_poisson_ptrs(bitgen, lam)
    elif (lam == 0):
        return 0
    else:
        return random_poisson_mult(bitgen, lam)


@register_jitable
def random_negative_binomial(bitgen, n, p):
    Y = random_gamma(bitgen, n, (1 - p) / p)
    return random_poisson(bitgen, Y)


@register_jitable
def random_noncentral_chisquare(bitgen, df, nonc):
    if np.isnan(nonc):
        return np.nan

    if nonc == 0:
        return random_chisquare(bitgen, df)

    if 1 < df:
        Chi2 = random_chisquare(bitgen, df - 1)
        n = random_standard_normal(bitgen) + np.sqrt(nonc)
        return Chi2 + n * n
    else:
        i = random_poisson(bitgen, nonc / 2.0)
        return random_chisquare(bitgen, df + 2 * i)


@register_jitable
def random_noncentral_f(bitgen, dfnum, dfden, nonc):
    t = random_noncentral_chisquare(bitgen, dfnum, nonc) * dfden
    return t / (random_chisquare(bitgen, dfden) * dfnum)


@register_jitable
def random_logseries(bitgen, p):
    r = np_log1p(-p)

    while 1:
        V = next_double(bitgen)
        if (V >= p):
            return 1
        U = next_double(bitgen)
        q = -np.expm1(r * U)
        if (V <= q * q):
            result = int64(np.floor(1 + np.log(V) / np.log(q)))
            if result < 1 or V == 0.0:
                continue
            else:
                return result
        if (V >= q):
            return 1
        else:
            return 2


@register_jitable
def random_binomial_btpe(bitgen, n, p):
    r = min(p, 1.0 - p)
    q = 1.0 - r
    fm = n * r + r
    m = int(np.floor(fm))
    p1 = int(np.floor(2.195 * np.sqrt(n * r * q) - 4.6 * q) + 0.5)
    xm = m + 0.5
    xl = xm - p1
    xr = xm + p1
    c = 0.134 + 20.5 / (15.3 + m)
    a = (fm - xl) / (fm - xl * r)
    laml = a * (1.0 + a / 2.0)
    a = (xr - fm) / (xr * q)
    lamr = a * (1.0 + a / 2.0)
    p2 = p1 * (1.0 + 2.0 * c)
    p3 = p2 + c / laml
    p4 = p3 + c / lamr

    case = 10
    y = k = 0
    while 1:
        if case == 10:
            nrq = n * r * q
            u = next_double(bitgen) * p4
            v = next_double(bitgen)
            if (u > p1):
                case = 20
                continue
            y = int(np.floor(xm - p1 * v + u))
            case = 60
            continue
        elif case == 20:
            if (u > p2):
                case = 30
                continue
            x = xl + (u - p1) / c
            v = v * c + 1.0 - np.fabs(m - x + 0.5) / p1
            if (v > 1.0):
                case = 10
                continue
            y = int(np.floor(x))
            case = 50
            continue
        elif case == 30:
            if (u > p3):
                case = 40
                continue
            y = int(np.floor(xl + np.log(v) / laml))
            if ((y < 0) or (v == 0.0)):
                case = 10
                continue
            v = v * (u - p2) * laml
            case = 50
            continue
        elif case == 40:
            y = int(np.floor(xr - np.log(v) / lamr))
            if ((y > n) or (v == 0.0)):
                case = 10
                continue
            v = v * (u - p3) * lamr
            case = 50
            continue
        elif case == 50:
            k = abs(y - m)
            if ((k > 20) and (k < ((nrq) / 2.0 - 1))):
                case = 52
                continue
            s = r / q
            a = s * (n + 1)
            F = 1.0
            if (m < y):
                for i in range(m + 1, y + 1):
                    F = F * (a / i - s)
            elif (m > y):
                for i in range(y + 1, m + 1):
                    F = F / (a / i - s)
            if (v > F):
                case = 10
                continue
            case = 60
            continue
        elif case == 52:
            rho = (k / (nrq)) * \
                  ((k * (k / 3.0 + 0.625) + 0.16666666666666666) /
                   nrq + 0.5)
            t = -k * k / (2 * nrq)
            A = np.log(v)
            if (A < (t - rho)):
                case = 60
                continue
            if (A > (t + rho)):
                case = 10
                continue
            x1 = y + 1
            f1 = m + 1
            z = n + 1 - m
            w = n - y + 1
            x2 = x1 * x1
            f2 = f1 * f1
            z2 = z * z
            w2 = w * w
            if (A > (xm * np.log(f1 / x1) + (n - m + 0.5) * np.log(z / w) +
                     (y - m) * np.log(w * r / (x1 * q)) +
                     (13680. - (462. - (132. - (99. - 140. / f2) / f2) / f2)
                      / f2) / f1 / 166320. +
                     (13680. - (462. - (132. - (99. - 140. / z2) / z2) / z2)
                      / z2) / z / 166320. +
                     (13680. - (462. - (132. - (99. - 140. / x2) / x2) / x2)
                      / x2) / x1 / 166320. +
                     (13680. - (462. - (132. - (99. - 140. / w2) / w2) / w2)
                      / w2) / w / 66320.)):
                case = 10
                continue
        elif case == 60:
            if (p > 0.5):
                y = n - y
            return y


@register_jitable
def random_binomial_inversion(bitgen, n, p):
    q = 1.0 - p
    qn = np.exp(n * np.log(q))
    _np = n * p
    bound = min(n, _np + 10.0 * np.sqrt(_np * q + 1))

    X = 0
    px = qn
    U = next_double(bitgen)
    while (U > px):
        X = X + 1
        if (X > bound):
            X = 0
            px = qn
            U = next_double(bitgen)
        else:
            U -= px
            px = ((n - X + 1) * p * px) / (X * q)

    return X


@register_jitable
def random_binomial(bitgen, n, p):
    if ((n == 0) or (p == 0.0)):
        return 0

    if (p <= 0.5):
        if (p * n <= 30.0):
            return random_binomial_inversion(bitgen, n, p)
        else:
            return random_binomial_btpe(bitgen, n, p)
    else:
        q = 1.0 - p
        if (q * n <= 30.0):
            return n - random_binomial_inversion(bitgen, n, q)
        else:
            return n - random_binomial_btpe(bitgen, n, q)