quicksort.py 7.46 KB
Newer Older
dugupeiwen's avatar
dugupeiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import collections

import numpy as np

from numba.core import types


QuicksortImplementation = collections.namedtuple(
    'QuicksortImplementation',
    (# The compile function itself
     'compile',
     # All subroutines exercised by test_sort
     'partition', 'partition3', 'insertion_sort',
     # The top-level function
     'run_quicksort',
     ))


Partition = collections.namedtuple('Partition', ('start', 'stop'))

# Under this size, switch to a simple insertion sort
SMALL_QUICKSORT = 15

MAX_STACK = 100


def make_quicksort_impl(wrap, lt=None, is_argsort=False, is_list=False, is_np_array=False):

    intp = types.intp
    zero = intp(0)

    # Two subroutines to make the core algorithm generic wrt. argsort
    # or normal sorting.  Note the genericity may make basic sort()
    # slightly slower (~5%)
    if is_argsort:
        if is_list:
            @wrap
            def make_res(A):
                return [x for x in range(len(A))]
        else:
            @wrap
            def make_res(A):
                return np.arange(A.size)

        @wrap
        def GET(A, idx_or_val):
            return A[idx_or_val]

    else:
        @wrap
        def make_res(A):
            return A

        @wrap
        def GET(A, idx_or_val):
            return idx_or_val

    def default_lt(a, b):
        """
        Trivial comparison function between two keys.
        """
        return a < b

    LT = wrap(lt if lt is not None else default_lt)

    @wrap
    def insertion_sort(A, R, low, high):
        """
        Insertion sort A[low:high + 1]. Note the inclusive bounds.
        """
        assert low >= 0
        if high <= low:
            return

        for i in range(low + 1, high + 1):
            k = R[i]
            v = GET(A, k)
            # Insert v into A[low:i]
            j = i
            while j > low and LT(v, GET(A, R[j - 1])):
                # Make place for moving A[i] downwards
                R[j] = R[j - 1]
                j -= 1
            R[j] = k

    @wrap
    def partition(A, R, low, high):
        """
        Partition A[low:high + 1] around a chosen pivot.  The pivot's index
        is returned.
        """
        assert low >= 0
        assert high > low

        mid = (low + high) >> 1
        # NOTE: the pattern of swaps below for the pivot choice and the
        # partitioning gives good results (i.e. regular O(n log n))
        # on sorted, reverse-sorted, and uniform arrays.  Subtle changes
        # risk breaking this property.

        # median of three {low, middle, high}
        if LT(GET(A, R[mid]), GET(A, R[low])):
            R[low], R[mid] = R[mid], R[low]
        if LT(GET(A, R[high]), GET(A, R[mid])):
            R[high], R[mid] = R[mid], R[high]
        if LT(GET(A, R[mid]), GET(A, R[low])):
            R[low], R[mid] = R[mid], R[low]
        pivot = GET(A, R[mid])

        # Temporarily stash the pivot at the end
        R[high], R[mid] = R[mid], R[high]
        i = low
        j = high - 1
        while True:
            while i < high and LT(GET(A, R[i]), pivot):
                i += 1
            while j >= low and LT(pivot, GET(A, R[j])):
                j -= 1
            if i >= j:
                break
            R[i], R[j] = R[j], R[i]
            i += 1
            j -= 1
        # Put the pivot back in its final place (all items before `i`
        # are smaller than the pivot, all items at/after `i` are larger)
        R[i], R[high] = R[high], R[i]
        return i

    @wrap
    def partition3(A, low, high):
        """
        Three-way partition [low, high) around a chosen pivot.
        A tuple (lt, gt) is returned such that:
            - all elements in [low, lt) are < pivot
            - all elements in [lt, gt] are == pivot
            - all elements in (gt, high] are > pivot
        """
        mid = (low + high) >> 1
        # median of three {low, middle, high}
        if LT(A[mid], A[low]):
            A[low], A[mid] = A[mid], A[low]
        if LT(A[high], A[mid]):
            A[high], A[mid] = A[mid], A[high]
        if LT(A[mid], A[low]):
            A[low], A[mid] = A[mid], A[low]
        pivot = A[mid]

        A[low], A[mid] = A[mid], A[low]
        lt = low
        gt = high
        i = low + 1
        while i <= gt:
            if LT(A[i], pivot):
                A[lt], A[i] = A[i], A[lt]
                lt += 1
                i += 1
            elif LT(pivot, A[i]):
                A[gt], A[i] = A[i], A[gt]
                gt -= 1
            else:
                i += 1
        return lt, gt

    @wrap
    def run_quicksort1(A):
        R = make_res(A)

        if len(A) < 2:
            return R

        stack = [Partition(zero, zero)] * MAX_STACK
        stack[0] = Partition(zero, len(A) - 1)
        n = 1

        while n > 0:
            n -= 1
            low, high = stack[n]
            # Partition until it becomes more efficient to do an insertion sort
            while high - low >= SMALL_QUICKSORT:
                assert n < MAX_STACK
                i = partition(A, R, low, high)
                # Push largest partition on the stack
                if high - i > i - low:
                    # Right is larger
                    if high > i:
                        stack[n] = Partition(i + 1, high)
                        n += 1
                    high = i - 1
                else:
                    if i > low:
                        stack[n] = Partition(low, i - 1)
                        n += 1
                    low = i + 1

            insertion_sort(A, R, low, high)

        return R

    if is_np_array:
        @wrap
        def run_quicksort(A):
            if A.ndim == 1:
                return run_quicksort1(A)
            else:
                for idx in np.ndindex(A.shape[:-1]):
                    run_quicksort1(A[idx])
                return A
    else:
        @wrap
        def run_quicksort(A):
            return run_quicksort1(A)

    # Unused quicksort implementation based on 3-way partitioning; the
    # partitioning scheme turns out exhibiting bad behaviour on sorted arrays.
    @wrap
    def _run_quicksort(A):
        stack = [Partition(zero, zero)] * 100
        stack[0] = Partition(zero, len(A) - 1)
        n = 1

        while n > 0:
            n -= 1
            low, high = stack[n]
            # Partition until it becomes more efficient to do an insertion sort
            while high - low >= SMALL_QUICKSORT:
                assert n < MAX_STACK
                l, r = partition3(A, low, high)
                # One trivial (empty) partition => iterate on the other
                if r == high:
                    high = l - 1
                elif l == low:
                    low = r + 1
                # Push largest partition on the stack
                elif high - r > l - low:
                    # Right is larger
                    stack[n] = Partition(r + 1, high)
                    n += 1
                    high = l - 1
                else:
                    stack[n] = Partition(low, l - 1)
                    n += 1
                    low = r + 1

            insertion_sort(A, low, high)


    return QuicksortImplementation(wrap,
                                   partition, partition3, insertion_sort,
                                   run_quicksort)


def make_py_quicksort(*args, **kwargs):
    return make_quicksort_impl((lambda f: f), *args, **kwargs)

def make_jit_quicksort(*args, **kwargs):
    from numba.core.extending import register_jitable
    return make_quicksort_impl((lambda f: register_jitable(f)),
                               *args, **kwargs)