randomimpl.py 74.4 KB
Newer Older
dugupeiwen's avatar
dugupeiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
"""
Implement the random and np.random module functions.
"""


import math
import random

import numpy as np

from llvmlite import ir

from numba.core.cgutils import is_nonelike
from numba.core.extending import intrinsic, overload, register_jitable
from numba.core.imputils import (Registry, impl_ret_untracked,
                                    impl_ret_new_ref)
from numba.core.typing import signature
from numba.core import types, cgutils
from numba.np import arrayobj
from numba.core.errors import NumbaTypeError


registry = Registry('randomimpl')
lower = registry.lower

int32_t = ir.IntType(32)
int64_t = ir.IntType(64)
def const_int(x):
    return ir.Constant(int32_t, x)
double = ir.DoubleType()

N = 624
N_const = ir.Constant(int32_t, N)


# This is the same struct as rnd_state_t in _random.c.
rnd_state_t = ir.LiteralStructType([
    # index
    int32_t,
    # mt[N]
    ir.ArrayType(int32_t, N),
    # has_gauss
    int32_t,
    # gauss
    double,
    # is_initialized
    int32_t,
    ])
rnd_state_ptr_t = ir.PointerType(rnd_state_t)


def get_state_ptr(context, builder, name):
    """
    Get a pointer to the given thread-local random state
    (depending on *name*: "py" or "np").
    If the state isn't initialized, it is lazily initialized with
    system entropy.
    """
    assert name in ('py', 'np', 'internal')
    func_name = "numba_get_%s_random_state" % name
    fnty = ir.FunctionType(rnd_state_ptr_t, ())
    fn = cgutils.get_or_insert_function(builder.module, fnty, func_name)
    # These two attributes allow LLVM to hoist the function call
    # outside of loops.
    fn.attributes.add('readnone')
    fn.attributes.add('nounwind')
    return builder.call(fn, ())

def get_py_state_ptr(context, builder):
    """
    Get a pointer to the thread-local Python random state.
    """
    return get_state_ptr(context, builder, 'py')

def get_np_state_ptr(context, builder):
    """
    Get a pointer to the thread-local Numpy random state.
    """
    return get_state_ptr(context, builder, 'np')

def get_internal_state_ptr(context, builder):
    """
    Get a pointer to the thread-local internal random state.
    """
    return get_state_ptr(context, builder, 'internal')

# Accessors
def get_index_ptr(builder, state_ptr):
    return cgutils.gep_inbounds(builder, state_ptr, 0, 0)

def get_array_ptr(builder, state_ptr):
    return cgutils.gep_inbounds(builder, state_ptr, 0, 1)

def get_has_gauss_ptr(builder, state_ptr):
    return cgutils.gep_inbounds(builder, state_ptr, 0, 2)

def get_gauss_ptr(builder, state_ptr):
    return cgutils.gep_inbounds(builder, state_ptr, 0, 3)

def get_rnd_shuffle(builder):
    """
    Get the internal function to shuffle the MT taste.
    """
    fnty = ir.FunctionType(ir.VoidType(), (rnd_state_ptr_t,))
    fn = cgutils.get_or_insert_function(builder.function.module, fnty,
                                        "numba_rnd_shuffle")
    fn.args[0].add_attribute("nocapture")
    return fn


def get_next_int32(context, builder, state_ptr):
    """
    Get the next int32 generated by the PRNG at *state_ptr*.
    """
    idxptr = get_index_ptr(builder, state_ptr)
    idx = builder.load(idxptr)
    need_reshuffle = builder.icmp_unsigned('>=', idx, N_const)
    with cgutils.if_unlikely(builder, need_reshuffle):
        fn = get_rnd_shuffle(builder)
        builder.call(fn, (state_ptr,))
        builder.store(const_int(0), idxptr)
    idx = builder.load(idxptr)
    array_ptr = get_array_ptr(builder, state_ptr)
    y = builder.load(cgutils.gep_inbounds(builder, array_ptr, 0, idx))
    idx = builder.add(idx, const_int(1))
    builder.store(idx, idxptr)
    # Tempering
    y = builder.xor(y, builder.lshr(y, const_int(11)))
    y = builder.xor(y, builder.and_(builder.shl(y, const_int(7)),
                                    const_int(0x9d2c5680)))
    y = builder.xor(y, builder.and_(builder.shl(y, const_int(15)),
                                    const_int(0xefc60000)))
    y = builder.xor(y, builder.lshr(y, const_int(18)))
    return y

def get_next_double(context, builder, state_ptr):
    """
    Get the next double generated by the PRNG at *state_ptr*.
    """
    # a = rk_random(state) >> 5, b = rk_random(state) >> 6;
    a = builder.lshr(get_next_int32(context, builder, state_ptr), const_int(5))
    b = builder.lshr(get_next_int32(context, builder, state_ptr), const_int(6))

    # return (a * 67108864.0 + b) / 9007199254740992.0;
    a = builder.uitofp(a, double)
    b = builder.uitofp(b, double)
    return builder.fdiv(
        builder.fadd(b, builder.fmul(a, ir.Constant(double, 67108864.0))),
        ir.Constant(double, 9007199254740992.0))

def get_next_int(context, builder, state_ptr, nbits, is_numpy):
    """
    Get the next integer with width *nbits*.
    """
    c32 = ir.Constant(nbits.type, 32)
    def get_shifted_int(nbits):
        shift = builder.sub(c32, nbits)
        y = get_next_int32(context, builder, state_ptr)

        # This truncation/extension is safe because 0 < nbits <= 64
        if nbits.type.width < y.type.width:
            shift = builder.zext(shift, y.type)
        elif nbits.type.width > y.type.width:
            shift = builder.trunc(shift, y.type)

        if is_numpy:
            # Use the last N bits, to match np.random
            mask = builder.not_(ir.Constant(y.type, 0))
            mask = builder.lshr(mask, shift)
            return builder.and_(y, mask)
        else:
            # Use the first N bits, to match CPython random
            return builder.lshr(y, shift)

    ret = cgutils.alloca_once_value(builder, ir.Constant(int64_t, 0))

    is_32b = builder.icmp_unsigned('<=', nbits, c32)
    with builder.if_else(is_32b) as (ifsmall, iflarge):
        with ifsmall:
            low = get_shifted_int(nbits)
            builder.store(builder.zext(low, int64_t), ret)
        with iflarge:
            # XXX This assumes nbits <= 64
            if is_numpy:
                # Get the high bits first to match np.random
                high = get_shifted_int(builder.sub(nbits, c32))
            low = get_next_int32(context, builder, state_ptr)
            if not is_numpy:
                # Get the high bits second to match CPython random
                high = get_shifted_int(builder.sub(nbits, c32))
            total = builder.add(
                builder.zext(low, int64_t),
                builder.shl(builder.zext(high, int64_t),
                            ir.Constant(int64_t, 32)))
            builder.store(total, ret)

    return builder.load(ret)


@overload(random.seed)
def seed_impl(a):
    if isinstance(a, types.Integer):
        fn = register_jitable(_seed_impl('py'))
        def impl(a):
            return fn(a)
        return impl


@overload(np.random.seed)
def seed_impl(seed):
    if isinstance(seed, types.Integer):
        return _seed_impl('np')


def _seed_impl(state_type):
    @intrinsic
    def _impl(typingcontext, seed):
        def codegen(context, builder, sig, args):
            seed_value, = args
            fnty = ir.FunctionType(ir.VoidType(), (rnd_state_ptr_t, int32_t))
            fn = cgutils.get_or_insert_function(builder.function.module, fnty,
                                                'numba_rnd_init')
            builder.call(fn, (get_state_ptr(context, builder, state_type),
                              seed_value))
            return context.get_constant(types.none, None)
        return signature(types.void, types.uint32), codegen
    return lambda seed: _impl(seed)


@overload(random.random)
def random_impl():
    @intrinsic
    def _impl(typingcontext):
        def codegen(context, builder, sig, args):
            state_ptr = get_state_ptr(context, builder, "py")
            return get_next_double(context, builder, state_ptr)
        return signature(types.double), codegen
    return lambda: _impl()


@overload(np.random.random)
@overload(np.random.random_sample)
@overload(np.random.sample)
@overload(np.random.ranf)
def random_impl0():
    @intrinsic
    def _impl(typingcontext):
        def codegen(context, builder, sig, args):
            state_ptr = get_state_ptr(context, builder, "np")
            return get_next_double(context, builder, state_ptr)
        return signature(types.float64), codegen
    return lambda: _impl()


@overload(np.random.random)
@overload(np.random.random_sample)
@overload(np.random.sample)
@overload(np.random.ranf)
def random_impl1(size=None):
    if is_nonelike(size):
        return lambda size=None: np.random.random()
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                           and isinstance(size.dtype,
                                                          types.Integer)):
        def _impl(size=None):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.random()
            return out
        return _impl


@overload(random.gauss)
@overload(random.normalvariate)
def gauss_impl(mu, sigma):
    if isinstance(mu, (types.Float, types.Integer)) and isinstance(
            sigma, (types.Float, types.Integer)):
        @intrinsic
        def _impl(typingcontext, mu, sigma):
            loc_preprocessor = _double_preprocessor(mu)
            scale_preprocessor = _double_preprocessor(sigma)
            return signature(types.float64, mu, sigma),\
                   _gauss_impl("py", loc_preprocessor, scale_preprocessor)
        return lambda mu, sigma: _impl(mu, sigma)


@overload(np.random.standard_normal)
@overload(np.random.normal)
def np_gauss_impl0():
    return lambda: np.random.normal(0.0, 1.0)


@overload(np.random.normal)
def np_gauss_impl1(loc):
    if isinstance(loc, (types.Float, types.Integer)):
        return lambda loc: np.random.normal(loc, 1.0)


@overload(np.random.normal)
def np_gauss_impl2(loc, scale):
    if isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)):
        @intrinsic
        def _impl(typingcontext, loc, scale):
            loc_preprocessor = _double_preprocessor(loc)
            scale_preprocessor = _double_preprocessor(scale)
            return signature(types.float64, loc, scale),\
                   _gauss_impl("np", loc_preprocessor, scale_preprocessor)
        return lambda loc, scale: _impl(loc, scale)


@overload(np.random.standard_normal)
def standard_normal_impl1(size):
    if is_nonelike(size):
        return lambda size: np.random.standard_normal()
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.standard_normal()
            return out
        return _impl


@overload(np.random.normal)
def np_gauss_impl3(loc, scale, size):
    if (isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)) and
       is_nonelike(size)):
        return lambda loc, scale, size: np.random.normal(loc, scale)
    if (isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)) and
       (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer)))):
        def _impl(loc, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.normal(loc, scale)
            return out
        return _impl


def _gauss_pair_impl(_random):
    def compute_gauss_pair():
        """
        Compute a pair of numbers on the normal distribution.
        """
        while True:
            x1 = 2.0 * _random() - 1.0
            x2 = 2.0 * _random() - 1.0
            r2 = x1*x1 + x2*x2
            if r2 < 1.0 and r2 != 0.0:
                break

        # Box-Muller transform
        f = math.sqrt(-2.0 * math.log(r2) / r2)
        return f * x1, f * x2
    return compute_gauss_pair


def _gauss_impl(state, loc_preprocessor, scale_preprocessor):
    def _impl(context, builder, sig, args):
        # The type for all computations (either float or double)
        ty = sig.return_type
        llty = context.get_data_type(ty)
        _random = {"py": random.random,
                   "np": np.random.random}[state]

        state_ptr = get_state_ptr(context, builder, state)

        ret = cgutils.alloca_once(builder, llty, name="result")

        gauss_ptr = get_gauss_ptr(builder, state_ptr)
        has_gauss_ptr = get_has_gauss_ptr(builder, state_ptr)
        has_gauss = cgutils.is_true(builder, builder.load(has_gauss_ptr))
        with builder.if_else(has_gauss) as (then, otherwise):
            with then:
                # if has_gauss: return it
                builder.store(builder.load(gauss_ptr), ret)
                builder.store(const_int(0), has_gauss_ptr)
            with otherwise:
                # if not has_gauss: compute a pair of numbers using the Box-Muller
                # transform; keep one and return the other
                pair = context.compile_internal(builder,
                                                _gauss_pair_impl(_random),
                                                signature(types.UniTuple(ty, 2)),
                                                ())

                first, second = cgutils.unpack_tuple(builder, pair, 2)
                builder.store(first, gauss_ptr)
                builder.store(second, ret)
                builder.store(const_int(1), has_gauss_ptr)

        mu, sigma = args
        return builder.fadd(loc_preprocessor(builder, mu),
                            builder.fmul(scale_preprocessor(builder, sigma),
                                         builder.load(ret)))
    return _impl


def _double_preprocessor(value):
    ty = ir.types.DoubleType()

    if isinstance(value, types.Integer):
        if value.signed:
            return lambda builder, v: builder.sitofp(v, ty)
        else:
            return lambda builder, v: builder.uitofp(v, ty)
    elif isinstance(value, types.Float):
        if value.bitwidth != 64:
            return lambda builder, v: builder.fpext(v, ty)
        else:
            return lambda _builder, v: v
    else:
        raise TypeError("Cannot convert {} to floating point type" % value)


@overload(random.getrandbits)
def getrandbits_impl(k):
    if isinstance(k, types.Integer):
        @intrinsic
        def _impl(typingcontext, k):
            def codegen(context, builder, sig, args):
                nbits, = args

                too_large = builder.icmp_unsigned(">=", nbits, const_int(65))
                too_small = builder.icmp_unsigned("==", nbits, const_int(0))
                with cgutils.if_unlikely(builder, builder.or_(too_large,
                                                              too_small)):
                    msg = "getrandbits() limited to 64 bits"
                    context.call_conv.return_user_exc(builder, OverflowError,
                                                      (msg,))
                state_ptr = get_state_ptr(context, builder, "py")
                return get_next_int(context, builder, state_ptr, nbits, False)
            return signature(types.uint64, k), codegen
        return lambda k: _impl(k)


def _randrange_impl(context, builder, start, stop, step, ty, signed, state):
    state_ptr = get_state_ptr(context, builder, state)
    zero = ir.Constant(ty, 0)
    one = ir.Constant(ty, 1)
    nptr = cgutils.alloca_once(builder, ty, name="n")

    # n = stop - start
    builder.store(builder.sub(stop, start), nptr)

    with builder.if_then(builder.icmp_signed('<', step, zero)):
        # n = (n + step + 1) // step
        w = builder.add(builder.add(builder.load(nptr), step), one)
        n = builder.sdiv(w, step)
        builder.store(n, nptr)
    with builder.if_then(builder.icmp_signed('>', step, one)):
        # n = (n + step - 1) // step
        w = builder.sub(builder.add(builder.load(nptr), step), one)
        n = builder.sdiv(w, step)
        builder.store(n, nptr)

    n = builder.load(nptr)
    with cgutils.if_unlikely(builder, builder.icmp_signed('<=', n, zero)):
        # n <= 0
        msg = "empty range for randrange()"
        context.call_conv.return_user_exc(builder, ValueError, (msg,))

    fnty = ir.FunctionType(ty, [ty, cgutils.true_bit.type])
    fn = cgutils.get_or_insert_function(builder.function.module, fnty,
                                        "llvm.ctlz.%s" % ty)
    # Since the upper bound is exclusive, we need to subtract one before
    # calculating the number of bits. This leads to a special case when
    # n == 1; there's only one possible result, so we don't need bits from
    # the PRNG. This case is handled separately towards the end of this
    # function. CPython's implementation is simpler and just runs another
    # iteration of the while loop when the resulting number is too large
    # instead of subtracting one, to avoid needing to handle a special
    # case. Thus, we only perform this subtraction for the NumPy case.
    nm1 = builder.sub(n, one) if state == "np" else n
    nbits = builder.trunc(builder.call(fn, [nm1, cgutils.true_bit]), int32_t)
    nbits = builder.sub(ir.Constant(int32_t, ty.width), nbits)

    rptr = cgutils.alloca_once(builder, ty, name="r")

    def get_num():
        bbwhile = builder.append_basic_block("while")
        bbend = builder.append_basic_block("while.end")
        builder.branch(bbwhile)

        builder.position_at_end(bbwhile)
        r = get_next_int(context, builder, state_ptr, nbits, state == "np")
        r = builder.trunc(r, ty)
        too_large = builder.icmp_signed('>=', r, n)
        builder.cbranch(too_large, bbwhile, bbend)

        builder.position_at_end(bbend)
        builder.store(r, rptr)

    if state == "np":
        # Handle n == 1 case, per previous comment.
        with builder.if_else(builder.icmp_signed('==', n, one)) as (is_one, is_not_one):
            with is_one:
                builder.store(zero, rptr)
            with is_not_one:
                get_num()
    else:
        get_num()

    return builder.add(start, builder.mul(builder.load(rptr), step))


@overload(random.randrange)
def randrange_impl_1(start):
    if isinstance(start, types.Integer):
        return lambda start: random.randrange(0, start, 1)


@overload(random.randrange)
def randrange_impl_2(start, stop):
    if isinstance(start, types.Integer) and isinstance(stop, types.Integer):
        return lambda start, stop: random.randrange(start, stop, 1)


def _randrange_preprocessor(bitwidth, ty):
    if ty.bitwidth != bitwidth:
        return (ir.IRBuilder.sext if ty.signed
                else ir.IRBuilder.zext)
    else:
        return lambda _builder, v, _ty: v


@overload(random.randrange)
def randrange_impl_3(start, stop, step):
    if (isinstance(start, types.Integer) and isinstance(stop, types.Integer) and
       isinstance(step, types.Integer)):
        signed = max(start.signed, stop.signed, step.signed)
        bitwidth = max(start.bitwidth, stop.bitwidth, step.bitwidth)
        int_ty = types.Integer.from_bitwidth(bitwidth, signed)
        llvm_type = ir.IntType(bitwidth)

        start_preprocessor = _randrange_preprocessor(bitwidth, start)
        stop_preprocessor = _randrange_preprocessor(bitwidth, stop)
        step_preprocessor = _randrange_preprocessor(bitwidth, step)

        @intrinsic
        def _impl(typingcontext, start, stop, step):
            def codegen(context, builder, sig, args):
                start, stop, step = args

                start = start_preprocessor(builder, start, llvm_type)
                stop = stop_preprocessor(builder, stop, llvm_type)
                step = step_preprocessor(builder, step, llvm_type)
                return _randrange_impl(context, builder, start, stop, step,
                                       llvm_type, signed, 'py')
            return signature(int_ty, start, stop, step), codegen
        return lambda start, stop, step: _impl(start, stop, step)


@overload(random.randint)
def randint_impl_1(a, b):
    if isinstance(a, types.Integer) and isinstance(b, types.Integer):
        return lambda a, b: random.randrange(a, b + 1, 1)


@overload(np.random.randint)
def np_randint_impl_1(low):
    if isinstance(low, types.Integer):
        return lambda low: np.random.randint(0, low)


@overload(np.random.randint)
def np_randint_impl_2(low, high):
    if isinstance(low, types.Integer) and isinstance(high, types.Integer):
        signed = max(low.signed, high.signed)
        bitwidth = max(low.bitwidth, high.bitwidth)
        int_ty = types.Integer.from_bitwidth(bitwidth, signed)
        llvm_type = ir.IntType(bitwidth)

        start_preprocessor = _randrange_preprocessor(bitwidth, low)
        stop_preprocessor = _randrange_preprocessor(bitwidth, high)

        @intrinsic
        def _impl(typingcontext, low, high):
            def codegen(context, builder, sig, args):
                start, stop = args

                start = start_preprocessor(builder, start, llvm_type)
                stop = stop_preprocessor(builder, stop, llvm_type)
                step = ir.Constant(llvm_type, 1)
                return _randrange_impl(context, builder, start, stop, step,
                                       llvm_type, signed, 'np')
            return signature(int_ty, low, high), codegen
        return lambda low, high: _impl(low, high)


@overload(np.random.randint)
def np_randint_impl_3(low, high, size):
    if (isinstance(low, types.Integer) and isinstance(high, types.Integer) and
       is_nonelike(size)):
        return lambda low, high, size: np.random.randint(low, high)
    if (isinstance(low, types.Integer) and isinstance(high, types.Integer) and
       (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer)))):
        bitwidth = max(low.bitwidth, high.bitwidth)
        result_type = getattr(np, f'int{bitwidth}')

        def _impl(low, high, size):
            out = np.empty(size, dtype=result_type)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.randint(low, high)
            return out
        return _impl


@overload(np.random.uniform)
def np_uniform_impl0():
    return lambda: np.random.uniform(0.0, 1.0)


@overload(random.uniform)
def uniform_impl2(a, b):
    if isinstance(a, (types.Float, types.Integer)) and isinstance(
            b, (types.Float, types.Integer)):
        @intrinsic
        def _impl(typingcontext, a, b):
            low_preprocessor = _double_preprocessor(a)
            high_preprocessor = _double_preprocessor(b)
            return signature(types.float64, a, b), uniform_impl(
                'py', low_preprocessor, high_preprocessor)
        return lambda a, b: _impl(a, b)


@overload(np.random.uniform)
def np_uniform_impl2(low, high):
    if isinstance(low, (types.Float, types.Integer)) and isinstance(
            high, (types.Float, types.Integer)):
        @intrinsic
        def _impl(typingcontext, low, high):
            low_preprocessor = _double_preprocessor(low)
            high_preprocessor = _double_preprocessor(high)
            return signature(types.float64, low, high), uniform_impl(
                'np', low_preprocessor, high_preprocessor)
        return lambda low, high: _impl(low, high)


def uniform_impl(state, a_preprocessor, b_preprocessor):
    def impl(context, builder, sig, args):
        state_ptr = get_state_ptr(context, builder, state)
        a, b = args
        a = a_preprocessor(builder, a)
        b = b_preprocessor(builder, b)
        width = builder.fsub(b, a)
        r = get_next_double(context, builder, state_ptr)
        return builder.fadd(a, builder.fmul(width, r))
    return impl


@overload(np.random.uniform)
def np_uniform_impl3(low, high, size):
    if (isinstance(low, (types.Float, types.Integer)) and isinstance(
            high, (types.Float, types.Integer)) and
       is_nonelike(size)):
        return lambda low, high, size: np.random.uniform(low, high)
    if (isinstance(low, (types.Float, types.Integer)) and isinstance(
            high, (types.Float, types.Integer)) and
       (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer)))):
        def _impl(low, high, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.uniform(low, high)
            return out
        return _impl


@overload(random.triangular)
def triangular_impl_2(low, high):
    def _impl(low, high):
        u = random.random()
        c = 0.5
        if u > c:
            u = 1.0 - u
            low, high = high, low
        return low + (high - low) * math.sqrt(u * c)

    if isinstance(low, (types.Float, types.Integer)) and isinstance(
            high, (types.Float, types.Integer)):
        return _impl


@overload(random.triangular)
def triangular_impl_3(low, high, mode):
    if (isinstance(low, (types.Float, types.Integer)) and isinstance(
            high, (types.Float, types.Integer)) and
       isinstance(mode, (types.Float, types.Integer))):
        def _impl(low, high, mode):
            if high == low:
                return low
            u = random.random()
            c = (mode - low) / (high - low)
            if u > c:
                u = 1.0 - u
                c = 1.0 - c
                low, high = high, low
            return low + (high - low) * math.sqrt(u * c)

        return _impl


@overload(np.random.triangular)
def triangular_impl_3(left, mode, right):
    if (isinstance(left, (types.Float, types.Integer)) and isinstance(
            mode, (types.Float, types.Integer)) and
            isinstance(right, (types.Float, types.Integer))):
        def _impl(left, mode, right):
            if right == left:
                return left
            u = np.random.random()
            c = (mode - left) / (right - left)
            if u > c:
                u = 1.0 - u
                c = 1.0 - c
                left, right = right, left
            return left + (right - left) * math.sqrt(u * c)

        return _impl


@overload(np.random.triangular)
def triangular_impl(left, mode, right, size=None):
    if is_nonelike(size):
        return lambda left, mode, right, size=None: np.random.triangular(left,
                                                                         mode,
                                                                         right)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(left, mode, right, size=None):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.triangular(left, mode, right)
            return out
        return _impl


@overload(random.gammavariate)
def gammavariate_impl(alpha, beta):
    if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
            beta, (types.Float, types.Integer)):
        return _gammavariate_impl(random.random)


@overload(np.random.standard_gamma)
@overload(np.random.gamma)
def ol_np_random_gamma1(shape):
    if isinstance(shape, (types.Float, types.Integer)):
        return lambda shape: np.random.gamma(shape, 1.0)


@overload(np.random.gamma)
def ol_np_random_gamma2(shape, scale):
    if isinstance(shape, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)):
        fn = register_jitable(_gammavariate_impl(np.random.random))
        def impl(shape, scale):
            return fn(shape, scale)
        return impl


def _gammavariate_impl(_random):
    def _impl(alpha, beta):
        """Gamma distribution.  Taken from CPython.
        """
        SG_MAGICCONST = 1.0 + math.log(4.5)
        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        if alpha > 1.0:
            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74
            ainv = math.sqrt(2.0 * alpha - 1.0)
            bbb = alpha - math.log(4.0)
            ccc = alpha + ainv

            while 1:
                u1 = _random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - _random()
                v = math.log(u1/(1.0-u1))/ainv
                x = alpha*math.exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= math.log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)

            # Adjust due to cpython
            # commit 63d152232e1742660f481c04a811f824b91f6790
            return -math.log(1.0 - _random()) * beta

        else:   # alpha is between 0 and 1 (exclusive)
            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
            while 1:
                u = _random()
                b = (math.e + alpha)/math.e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -math.log((b-p)/alpha)
                u1 = _random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= math.exp(-x):
                    break
            return x * beta
    return _impl


@overload(np.random.gamma)
def gamma_impl(shape, scale, size):
    if is_nonelike(size):
        return lambda shape, scale, size: np.random.gamma(shape, scale)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(shape, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.gamma(shape, scale)
            return out
        return _impl


@overload(np.random.standard_gamma)
def standard_gamma_impl(shape, size):
    if is_nonelike(size):
        return lambda shape, size: np.random.standard_gamma(shape)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(shape, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.standard_gamma(shape)
            return out
        return _impl


@overload(random.betavariate)
def betavariate_impl(alpha, beta):
    if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
            beta, (types.Float, types.Integer)):
        return _betavariate_impl(random.gammavariate)


@overload(np.random.beta)
def ol_np_random_beta(a, b):
    if isinstance(a, (types.Float, types.Integer)) and isinstance(
            b, (types.Float, types.Integer)):
        fn =  register_jitable(_betavariate_impl(np.random.gamma))
        def impl(a, b):
            return fn(a, b)
        return impl


def _betavariate_impl(gamma):
    def _impl(alpha, beta):
        """Beta distribution.  Taken from CPython.
        """
        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = gamma(alpha, 1.)
        if y == 0.0:
            return 0.0
        else:
            return y / (y + gamma(beta, 1.))
    return _impl


@overload(np.random.beta)
def beta_impl(a, b, size):
    if is_nonelike(size):
        return lambda a, b, size: np.random.beta(a, b)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(a, b, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.beta(a, b)
            return out
        return _impl


@overload(random.expovariate)
def expovariate_impl(lambd):
    if isinstance(lambd, types.Float):
        def _impl(lambd):
            """Exponential distribution.  Taken from CPython.
            """
            # lambd: rate lambd = 1/mean
            # ('lambda' is a Python reserved word)

            # we use 1-random() instead of random() to preclude the
            # possibility of taking the log of zero.
            return -math.log(1.0 - random.random()) / lambd

        return _impl


@overload(np.random.exponential)
def exponential_impl(scale):
    if isinstance(scale, (types.Float, types.Integer)):
        def _impl(scale):
            return -math.log(1.0 - np.random.random()) * scale
        return _impl


@overload(np.random.exponential)
def exponential_impl(scale, size):
    if is_nonelike(size):
        return lambda scale, size: np.random.exponential(scale)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.exponential(scale)
            return out
        return _impl


@overload(np.random.standard_exponential)
@overload(np.random.exponential)
def exponential_impl():
    def _impl():
        return -math.log(1.0 - np.random.random())
    return _impl


@overload(np.random.standard_exponential)
def standard_exponential_impl(size):
    if is_nonelike(size):
        return lambda size: np.random.standard_exponential()
    if (isinstance(size, types.Integer) or
       (isinstance(size, types.UniTuple) and isinstance(size.dtype,
                                                        types.Integer))
    ):
        def _impl(size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.standard_exponential()
            return out
        return _impl


@overload(np.random.lognormal)
def np_lognormal_impl0():
    return lambda: np.random.lognormal(0.0, 1.0)


@overload(np.random.lognormal)
def np_log_normal_impl1(mean):
    if isinstance(mean, (types.Float, types.Integer)):
        return lambda mean: np.random.lognormal(mean, 1.0)


@overload(np.random.lognormal)
def np_log_normal_impl2(mean, sigma):
    if isinstance(mean, (types.Float, types.Integer)) and isinstance(
            sigma, (types.Float, types.Integer)):
        fn = register_jitable(_lognormvariate_impl(np.random.normal))
        return lambda mean, sigma: fn(mean, sigma)


@overload(np.random.lognormal)
def lognormal_impl(mean, sigma, size):
    if is_nonelike(size):
        return lambda mean, sigma, size: np.random.lognormal(mean, sigma)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(mean, sigma, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.lognormal(mean, sigma)
            return out
        return _impl


@overload(random.lognormvariate)
def lognormvariate_impl(mu, sigma):
    if isinstance(mu, types.Float) and isinstance(sigma, types.Float):
        fn = register_jitable(_lognormvariate_impl(random.gauss))
        return lambda mu, sigma: fn(mu, sigma)


def _lognormvariate_impl(_gauss):
    return lambda mu, sigma: math.exp(_gauss(mu, sigma))


@overload(random.paretovariate)
def paretovariate_impl(alpha):
    if isinstance(alpha, types.Float):
        def _impl(alpha):
            """Pareto distribution.  Taken from CPython."""
            # Jain, pg. 495
            u = 1.0 - random.random()
            return 1.0 / u ** (1.0/alpha)

        return _impl


@overload(np.random.pareto)
def pareto_impl(a):
    if isinstance(a, types.Float):
        def _impl(a):
            # Same as paretovariate() - 1.
            u = 1.0 - np.random.random()
            return 1.0 / u ** (1.0/a) - 1

        return _impl


@overload(np.random.pareto)
def pareto_impl(a, size):
    if is_nonelike(size):
        return lambda a, size: np.random.pareto(a)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(a, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.pareto(a)
            return out
        return _impl


@overload(random.weibullvariate)
def weibullvariate_impl(alpha, beta):
    if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
            beta, (types.Float, types.Integer)):
        def _impl(alpha, beta):
            """Weibull distribution.  Taken from CPython."""
            # Jain, pg. 499; bug fix courtesy Bill Arms
            u = 1.0 - random.random()
            return alpha * (-math.log(u)) ** (1.0/beta)

        return _impl


@overload(np.random.weibull)
def weibull_impl(a):
    if isinstance(a, (types.Float, types.Integer)):
        def _impl(a):
            # Same as weibullvariate(1.0, a)
            u = 1.0 - np.random.random()
            return (-math.log(u)) ** (1.0/a)

        return _impl


@overload(np.random.weibull)
def weibull_impl2(a, size):
    if is_nonelike(size):
        return lambda a, size: np.random.weibull(a)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(a, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.weibull(a)
            return out
        return _impl


@overload(random.vonmisesvariate)
def vonmisesvariate_impl(mu, kappa):
    if isinstance(mu, types.Float) and isinstance(kappa, types.Float):
        return _vonmisesvariate_impl(random.random)


@overload(np.random.vonmises)
def vonmisesvariate_impl(mu, kappa):
    if isinstance(mu, types.Float) and isinstance(kappa, types.Float):
        return _vonmisesvariate_impl(np.random.random)


def _vonmisesvariate_impl(_random):
    def _impl(mu, kappa):
        """Circular data distribution.  Taken from CPython.
        Note the algorithm in Python 2.6 and Numpy is different:
        http://bugs.python.org/issue17141
        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.
        if kappa <= 1e-6:
            return 2.0 * math.pi * _random()

        s = 0.5 / kappa
        r = s + math.sqrt(1.0 + s * s)

        while 1:
            u1 = _random()
            z = math.cos(math.pi * u1)

            d = z / (r + z)
            u2 = _random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * math.exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = _random()
        if u3 > 0.5:
            theta = (mu + math.acos(f)) % (2.0 * math.pi)
        else:
            theta = (mu - math.acos(f)) % (2.0 * math.pi)

        return theta

    return _impl


@overload(np.random.vonmises)
def vonmises_impl(mu, kappa, size):
    if is_nonelike(size):
        return lambda mu, kappa, size: np.random.vonmises(mu, kappa)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(mu, kappa, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.vonmises(mu, kappa)
            return out
        return _impl


@overload(np.random.binomial)
def binomial_impl(n, p):
    if isinstance(n, types.Integer) and isinstance(
            p, (types.Float, types.Integer)):
        def _impl(n, p):
            """
            Binomial distribution.  Numpy's variant of the BINV algorithm
            is used.
            (Numpy uses BTPE for n*p >= 30, though)
            """
            if n < 0:
                raise ValueError("binomial(): n <= 0")
            if not (0.0 <= p <= 1.0):
                raise ValueError("binomial(): p outside of [0, 1]")
            if p == 0.0:
                return 0
            if p == 1.0:
                return n

            flipped = p > 0.5
            if flipped:
                p = 1.0 - p
            q = 1.0 - p

            niters = 1
            qn = q ** n
            while qn <= 1e-308:
                # Underflow => split into several iterations
                # Note this is much slower than Numpy's BTPE
                niters <<= 2
                n >>= 2
                qn = q ** n
                assert n > 0

            np_prod = n * p
            bound = min(n, np_prod + 10.0 * math.sqrt(np_prod * q + 1))

            total = 0
            while niters > 0:
                X = 0
                U = np.random.random()
                px = qn
                while X <= bound:
                    if U <= px:
                        total += n - X if flipped else X
                        niters -= 1
                        break
                    U -= px
                    X += 1
                    px = ((n - X + 1) * p * px) / (X * q)

            return total

        return _impl


@overload(np.random.binomial)
def binomial_impl(n, p, size):
    if is_nonelike(size):
        return lambda n, p, size: np.random.binomial(n, p)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(n, p, size):
            out = np.empty(size, dtype=np.intp)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.binomial(n, p)
            return out
        return _impl


@overload(np.random.chisquare)
def chisquare_impl(df):
    if isinstance(df, (types.Float, types.Integer)):
        def _impl(df):
            return 2.0 * np.random.standard_gamma(df / 2.0)

        return _impl


@overload(np.random.chisquare)
def chisquare_impl2(df, size):
    if is_nonelike(size):
        return lambda df, size: np.random.chisquare(df)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(df, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.chisquare(df)
            return out
        return _impl


@overload(np.random.f)
def f_impl(dfnum, dfden):
    if isinstance(dfnum, (types.Float, types.Integer)) and isinstance(
            dfden, (types.Float, types.Integer)):
        def _impl(dfnum, dfden):
            return ((np.random.chisquare(dfnum) * dfden) /
                    (np.random.chisquare(dfden) * dfnum))

        return _impl


@overload(np.random.f)
def f_impl(dfnum, dfden, size):
    if (isinstance(dfnum, (types.Float, types.Integer)) and isinstance(
            dfden, (types.Float, types.Integer)) and
       is_nonelike(size)):
        return lambda dfnum, dfden, size: np.random.f(dfnum, dfden)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(dfnum, dfden, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.f(dfnum, dfden)
            return out
        return _impl


@overload(np.random.geometric)
def geometric_impl(p):
    if isinstance(p, (types.Float, types.Integer)):
        def _impl(p):
            # Numpy's algorithm.
            if p <= 0.0 or p > 1.0:
                raise ValueError("geometric(): p outside of (0, 1]")
            q = 1.0 - p
            if p >= 0.333333333333333333333333:
                X = int(1)
                sum = prod = p
                U = np.random.random()
                while U > sum:
                    prod *= q
                    sum += prod
                    X += 1
                return X
            else:
                return math.ceil(math.log(1.0 - np.random.random()) /
                                 math.log(q))

        return _impl


@overload(np.random.geometric)
def geometric_impl(p, size):
    if is_nonelike(size):
        return lambda p, size: np.random.geometric(p)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                            isinstance(size.dtype,
                                                       types.Integer))):
        def _impl(p, size):
            out = np.empty(size, dtype=np.int64)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.geometric(p)
            return out
        return _impl


@overload(np.random.gumbel)
def gumbel_impl(loc, scale):
    if isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)):
        def _impl(loc, scale):
            U = 1.0 - np.random.random()
            return loc - scale * math.log(-math.log(U))

        return _impl


@overload(np.random.gumbel)
def gumbel_impl3(loc, scale, size):
    if is_nonelike(size):
        return lambda loc, scale, size: np.random.gumbel(loc, scale)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(loc, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.gumbel(loc, scale)
            return out
        return _impl


@overload(np.random.hypergeometric)
def hypergeometric_impl(ngood, nbad, nsample):
    if (isinstance(ngood, (types.Float, types.Integer)) and isinstance(
            nbad, (types.Float, types.Integer))
       and isinstance(nsample, (types.Float, types.Integer))):
        def _impl(ngood, nbad, nsample):
            """Numpy's algorithm for hypergeometric()."""
            d1 = int(nbad) + int(ngood) - int(nsample)
            d2 = float(min(nbad, ngood))

            Y = d2
            K = int(nsample)
            while Y > 0.0 and K > 0:
                Y -= math.floor(np.random.random() + Y / (d1 + K))
                K -= 1
            Z = int(d2 - Y)
            if ngood > nbad:
                return int(nsample) - Z
            else:
                return Z

        return _impl


@overload(np.random.hypergeometric)
def hypergeometric_impl(ngood, nbad, nsample, size):
    if is_nonelike(size):
        return lambda ngood, nbad, nsample, size:\
            np.random.hypergeometric(ngood, nbad, nsample)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(ngood, nbad, nsample, size):
            out = np.empty(size, dtype=np.intp)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.hypergeometric(ngood, nbad, nsample)
            return out
        return _impl


@overload(np.random.laplace)
def laplace_impl0():
    return lambda: np.random.laplace(0.0, 1.0)


@overload(np.random.laplace)
def laplace_impl1(loc):
    if isinstance(loc, (types.Float, types.Integer)):
        return lambda loc: np.random.laplace(loc, 1.0)


@overload(np.random.laplace)
def laplace_impl2(loc, scale):
    if isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)):
        return laplace_impl


@overload(np.random.laplace)
def laplace_impl3(loc, scale, size):
    if is_nonelike(size):
        return lambda loc, scale, size: np.random.laplace(loc, scale)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(loc, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.laplace(loc, scale)
            return out
        return _impl


def laplace_impl(loc, scale):
    U = np.random.random()
    if U < 0.5:
        return loc + scale * math.log(U + U)
    else:
        return loc - scale * math.log(2.0 - U - U)


@overload(np.random.logistic)
def logistic_impl0():
    return lambda: np.random.logistic(0.0, 1.0)


@overload(np.random.logistic)
def logistic_impl1(loc):
    if isinstance(loc, (types.Float, types.Integer)):
        return lambda loc: np.random.logistic(loc, 1.0)


@overload(np.random.logistic)
def logistic_impl2(loc, scale):
    if isinstance(loc, (types.Float, types.Integer)) and isinstance(
            scale, (types.Float, types.Integer)):
        return logistic_impl


@overload(np.random.logistic)
def logistic_impl3(loc, scale, size):
    if is_nonelike(size):
        return lambda loc, scale, size: np.random.logistic(loc, scale)
    if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                            and isinstance(size.dtype,
                                                           types.Integer))):
        def _impl(loc, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.logistic(loc, scale)
            return out
        return _impl


def logistic_impl(loc, scale):
    U = np.random.random()
    return loc + scale * math.log(U / (1.0 - U))


def _logseries_impl(p):
    """Numpy's algorithm for logseries()."""
    if p <= 0.0 or p > 1.0:
        raise ValueError("logseries(): p outside of (0, 1]")
    r = math.log(1.0 - p)

    while 1:
        V = np.random.random()
        if V >= p:
            return 1
        U = np.random.random()
        q = 1.0 - math.exp(r * U)
        if V <= q * q:
            # XXX what if V == 0.0 ?
            return np.int64(1.0 + math.log(V) / math.log(q))
        elif V >= q:
            return 1
        else:
            return 2


@overload(np.random.logseries)
def logseries_impl(p):
    if isinstance(p, (types.Float, types.Integer)):
        return _logseries_impl


@overload(np.random.logseries)
def logseries_impl(p, size):
    if is_nonelike(size):
        return lambda p, size: np.random.logseries(p)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(p, size):
            out = np.empty(size, dtype=np.int64)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.logseries(p)
            return out
        return _impl


@overload(np.random.negative_binomial)
def negative_binomial_impl(n, p):
    if isinstance(n, types.Integer) and isinstance(
            p,(types.Float, types.Integer)):
        def _impl(n, p):
            if n <= 0:
                raise ValueError("negative_binomial(): n <= 0")
            if p < 0.0 or p > 1.0:
                raise ValueError("negative_binomial(): p outside of [0, 1]")
            Y = np.random.gamma(n, (1.0 - p) / p)
            return np.random.poisson(Y)

        return _impl


@overload(np.random.poisson)
def poisson_impl0():
    return lambda: np.random.poisson(1.0)


@overload(np.random.poisson)
def poisson_impl1(lam):
    if isinstance(lam, (types.Float, types.Integer)):
        @intrinsic
        def _impl(typingcontext, lam):
            lam_preprocessor = _double_preprocessor(lam)

            def codegen(context, builder, sig, args):
                state_ptr = get_np_state_ptr(context, builder)

                retptr = cgutils.alloca_once(builder, int64_t, name="ret")
                bbcont = builder.append_basic_block("bbcont")
                bbend = builder.append_basic_block("bbend")

                lam, = args
                lam = lam_preprocessor(builder, lam)
                big_lam = builder.fcmp_ordered('>=', lam,
                                               ir.Constant(double, 10.0))
                with builder.if_then(big_lam):
                    # For lambda >= 10.0, we switch to a more accurate
                    # algorithm (see _random.c).
                    fnty = ir.FunctionType(int64_t, (rnd_state_ptr_t, double))
                    fn = cgutils.get_or_insert_function(builder.function.module,
                                                        fnty,
                                                        "numba_poisson_ptrs")
                    ret = builder.call(fn, (state_ptr, lam))
                    builder.store(ret, retptr)
                    builder.branch(bbend)

                builder.branch(bbcont)
                builder.position_at_end(bbcont)

                _random = np.random.random
                _exp = math.exp

                def poisson_impl(lam):
                    """Numpy's algorithm for poisson() on small *lam*.

                    This method is invoked only if the parameter lambda of the
                    distribution is small ( < 10 ). The algorithm used is
                    described in "Knuth, D. 1969. 'Seminumerical Algorithms.
                    The Art of Computer Programming' vol 2.
                    """
                    if lam < 0.0:
                        raise ValueError("poisson(): lambda < 0")
                    if lam == 0.0:
                        return 0
                    enlam = _exp(-lam)
                    X = 0
                    prod = 1.0
                    while 1:
                        U = _random()
                        prod *= U
                        if prod <= enlam:
                            return X
                        X += 1

                ret = context.compile_internal(builder, poisson_impl, sig, args)
                builder.store(ret, retptr)
                builder.branch(bbend)
                builder.position_at_end(bbend)
                return builder.load(retptr)
            return signature(types.int64, lam), codegen
        return lambda lam: _impl(lam)


@overload(np.random.poisson)
def poisson_impl2(lam, size):
    if isinstance(lam, (types.Float, types.Integer)) and is_nonelike(size):
        return lambda lam, size: np.random.poisson(lam)
    if isinstance(lam, (types.Float, types.Integer)) and (
            isinstance(size, types.Integer) or
       (isinstance(size, types.UniTuple) and isinstance(size.dtype,
                                                        types.Integer))
    ):
        def _impl(lam, size):
            out = np.empty(size, dtype=np.intp)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.poisson(lam)
            return out
        return _impl


@overload(np.random.power)
def power_impl(a):
    if isinstance(a, (types.Float, types.Integer)):
        def _impl(a):
            if a <= 0.0:
                raise ValueError("power(): a <= 0")
            return math.pow(1 - math.exp(-np.random.standard_exponential()),
                            1./a)

        return _impl


@overload(np.random.power)
def power_impl(a, size):
    if is_nonelike(size):
        return lambda a, size: np.random.power(a)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(a, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.power(a)
            return out
        return _impl


@overload(np.random.rayleigh)
def rayleigh_impl0():
    return lambda: np.random.rayleigh(1.0)


@overload(np.random.rayleigh)
def rayleigh_impl1(scale):
    if isinstance(scale, (types.Float, types.Integer)):
        def impl(scale):
            if scale <= 0.0:
                raise ValueError("rayleigh(): scale <= 0")
            return scale * math.sqrt(-2.0 * math.log(1.0 - np.random.random()))
        return impl




@overload(np.random.rayleigh)
def rayleigh_impl2(scale, size):
    if is_nonelike(size):
        return lambda scale, size: np.random.rayleigh(scale)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.rayleigh(scale)
            return out
        return _impl


@overload(np.random.standard_cauchy)
def cauchy_impl():
    def _impl():
        return np.random.standard_normal() / np.random.standard_normal()

    return _impl


@overload(np.random.standard_cauchy)
def standard_cauchy_impl(size):
    if is_nonelike(size):
        return lambda size: np.random.standard_cauchy()
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                           and isinstance(size.dtype,
                                                          types.Integer)):
        def _impl(size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.standard_cauchy()
            return out
        return _impl


@overload(np.random.standard_t)
def standard_t_impl(df):
    if isinstance(df, (types.Float, types.Integer)):
        def _impl(df):
            N = np.random.standard_normal()
            G = np.random.standard_gamma(df / 2.0)
            X = math.sqrt(df / 2.0) * N / math.sqrt(G)
            return X

        return _impl


@overload(np.random.standard_t)
def standard_t_impl2(df, size):
    if is_nonelike(size):
        return lambda p, size: np.random.standard_t(p)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(df, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.standard_t(df)
            return out
        return _impl


@overload(np.random.wald)
def wald_impl(mean, scale):
    if isinstance(mean, types.Float) and isinstance(scale, types.Float):
        def _impl(mean, scale):
            if mean <= 0.0:
                raise ValueError("wald(): mean <= 0")
            if scale <= 0.0:
                raise ValueError("wald(): scale <= 0")
            mu_2l = mean / (2.0 * scale)
            Y = np.random.standard_normal()
            Y = mean * Y * Y
            X = mean + mu_2l * (Y - math.sqrt(4 * scale * Y + Y * Y))
            U = np.random.random()
            if U <= mean / (mean + X):
                return X
            else:
                return mean * mean / X

        return _impl


@overload(np.random.wald)
def wald_impl2(mean, scale, size):
    if is_nonelike(size):
        return lambda mean, scale, size: np.random.wald(mean, scale)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(mean, scale, size):
            out = np.empty(size)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.wald(mean, scale)
            return out
        return _impl


@overload(np.random.zipf)
def zipf_impl(a):
    if isinstance(a, types.Float):
        def _impl(a):
            if a <= 1.0:
                raise ValueError("zipf(): a <= 1")
            am1 = a - 1.0
            b = 2.0 ** am1
            while 1:
                U = 1.0 - np.random.random()
                V = np.random.random()
                X = int(math.floor(U ** (-1.0 / am1)))
                T = (1.0 + 1.0 / X) ** am1
                if X >= 1 and V * X * (T - 1.0) / (b - 1.0) <= (T / b):
                    return X

        return _impl


@overload(np.random.zipf)
def zipf_impl(a, size):
    if is_nonelike(size):
        return lambda a, size: np.random.zipf(a)
    if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
                                           isinstance(size.dtype,
                                                      types.Integer)):
        def _impl(a, size):
            out = np.empty(size, dtype=np.intp)
            out_flat = out.flat
            for idx in range(out.size):
                out_flat[idx] = np.random.zipf(a)
            return out
        return _impl

def do_shuffle_impl(x, rng):

    if not isinstance(x, types.Buffer):
        raise TypeError("The argument to shuffle() should be a buffer type")

    if rng == "np":
        rand = np.random.randint
    elif rng == "py":
        rand = random.randrange

    if x.ndim == 1:
        def impl(x):
            i = x.shape[0] - 1
            while i > 0:
                j = rand(i + 1)
                x[i], x[j] = x[j], x[i]
                i -= 1
    else:
        def impl(x):
            i = x.shape[0] - 1
            while i > 0:
                j = rand(i + 1)
                x[i], x[j] = np.copy(x[j]), np.copy(x[i])
                i -= 1

    return impl


@overload(random.shuffle)
def shuffle_impl(x):
    return do_shuffle_impl(x, "py")


@overload(np.random.shuffle)
def shuffle_impl(x):
    return do_shuffle_impl(x, "np")


@overload(np.random.permutation)
def permutation_impl(x):
    if isinstance(x, types.Integer):
        def permutation_impl(x):
            y = np.arange(x)
            np.random.shuffle(y)
            return y
    elif isinstance(x, types.Array):
        def permutation_impl(x):
            arr_copy = x.copy()
            np.random.shuffle(arr_copy)
            return arr_copy
    else:
        permutation_impl = None
    return permutation_impl


# ------------------------------------------------------------------------
# Irregular aliases: np.random.rand, np.random.randn

@overload(np.random.rand)
def rand(*size):
    if len(size) == 0:
        # Scalar output
        def rand_impl(*size):
            return np.random.random()

    else:
        # Array output
        def rand_impl(*size):
            return np.random.random(size)

    return rand_impl


@overload(np.random.randn)
def randn(*size):
    if len(size) == 0:
        # Scalar output
        def randn_impl(*size):
            return np.random.standard_normal()

    else:
        # Array output
        def randn_impl(*size):
            return np.random.standard_normal(size)

    return randn_impl


# ------------------------------------------------------------------------
# np.random.choice

@overload(np.random.choice)
def choice(a, size=None, replace=True):

    if isinstance(a, types.Array):
        # choice() over an array population
        assert a.ndim == 1
        dtype = a.dtype

        @register_jitable
        def get_source_size(a):
            return len(a)

        @register_jitable
        def copy_source(a):
            return a.copy()

        @register_jitable
        def getitem(a, a_i):
            return a[a_i]

    elif isinstance(a, types.Integer):
        # choice() over an implied arange() population
        dtype = np.intp

        @register_jitable
        def get_source_size(a):
            return a

        @register_jitable
        def copy_source(a):
            return np.arange(a)

        @register_jitable
        def getitem(a, a_i):
            return a_i

    else:
        raise TypeError("np.random.choice() first argument should be "
                        "int or array, got %s" % (a,))

    if size in (None, types.none):
        def choice_impl(a, size=None, replace=True):
            """
            choice() implementation returning a single sample
            (note *replace* is ignored)
            """
            n = get_source_size(a)
            i = np.random.randint(0, n)
            return getitem(a, i)

    else:
        def choice_impl(a, size=None, replace=True):
            """
            choice() implementation returning an array of samples
            """
            n = get_source_size(a)
            if replace:
                out = np.empty(size, dtype)
                fl = out.flat
                for i in range(len(fl)):
                    j = np.random.randint(0, n)
                    fl[i] = getitem(a, j)
                return out
            else:
                # Note we have to construct the array to compute out.size
                # (`size` can be an arbitrary int or tuple of ints)
                out = np.empty(size, dtype)
                if out.size > n:
                    raise ValueError("Cannot take a larger sample than "
                                     "population when 'replace=False'")
                # Get a permuted copy of the source array
                # we need this implementation in order to get the
                # np.random.choice inside numba to match the output
                # of np.random.choice outside numba when np.random.seed
                # is set to the same value
                permuted_a = np.random.permutation(a)
                fl = out.flat
                for i in range(len(fl)):
                    fl[i] = permuted_a[i]
                return out

    return choice_impl


# ------------------------------------------------------------------------
# np.random.multinomial

@overload(np.random.multinomial)
def multinomial(n, pvals, size=None):

    dtype = np.intp

    @register_jitable
    def multinomial_inner(n, pvals, out):
        # Numpy's algorithm for multinomial()
        fl = out.flat
        sz = out.size
        plen = len(pvals)

        for i in range(0, sz, plen):
            # Loop body: take a set of n experiments and fill up
            # fl[i:i + plen] with the distribution of results.

            # Current sum of outcome probabilities
            p_sum = 1.0
            # Current remaining number of experiments
            n_experiments = n
            # For each possible outcome `j`, compute the number of results
            # with this outcome.  This is done by considering the
            # conditional probability P(X=j | X>=j) and running a binomial
            # distribution over the remaining number of experiments.
            for j in range(0, plen - 1):
                p_j = pvals[j]
                n_j = fl[i + j] = np.random.binomial(n_experiments, p_j / p_sum)
                n_experiments -= n_j
                if n_experiments <= 0:
                    # Note the output was initialized to zero
                    break
                p_sum -= p_j
            if n_experiments > 0:
                # The remaining experiments end up in the last bucket
                fl[i + plen - 1] = n_experiments

    if not isinstance(n, types.Integer):
        raise TypeError("np.random.multinomial(): n should be an "
                        "integer, got %s" % (n,))

    if not isinstance(pvals, (types.Sequence, types.Array)):
        raise TypeError("np.random.multinomial(): pvals should be an "
                        "array or sequence, got %s" % (pvals,))

    if size in (None, types.none):
        def multinomial_impl(n, pvals, size=None):
            """
            multinomial(..., size=None)
            """
            out = np.zeros(len(pvals), dtype)
            multinomial_inner(n, pvals, out)
            return out

    elif isinstance(size, types.Integer):
        def multinomial_impl(n, pvals, size=None):
            """
            multinomial(..., size=int)
            """
            out = np.zeros((size, len(pvals)), dtype)
            multinomial_inner(n, pvals, out)
            return out

    elif isinstance(size, types.BaseTuple):
        def multinomial_impl(n, pvals, size=None):
            """
            multinomial(..., size=tuple)
            """
            out = np.zeros(size + (len(pvals),), dtype)
            multinomial_inner(n, pvals, out)
            return out

    else:
        raise TypeError("np.random.multinomial(): size should be int or "
                        "tuple or None, got %s" % (size,))

    return multinomial_impl

# ------------------------------------------------------------------------
# np.random.dirichlet


@overload(np.random.dirichlet)
def dirichlet(alpha):
    if isinstance(alpha, (types.Sequence, types.Array)):
        def dirichlet_impl(alpha):
            out = np.empty(len(alpha))
            dirichlet_arr(alpha, out)
            return out
        return dirichlet_impl


@overload(np.random.dirichlet)
def dirichlet(alpha, size=None):
    if not isinstance(alpha, (types.Sequence, types.Array)):
        raise NumbaTypeError(
            "np.random.dirichlet(): alpha should be an "
            "array or sequence, got %s" % (alpha,)
        )

    if size in (None, types.none):

        def dirichlet_impl(alpha, size=None):
            out = np.empty(len(alpha))
            dirichlet_arr(alpha, out)
            return out

    elif isinstance(size, types.Integer):

        def dirichlet_impl(alpha, size=None):
            """
            dirichlet(..., size=int)
            """
            out = np.empty((size, len(alpha)))
            dirichlet_arr(alpha, out)
            return out

    elif isinstance(size, types.UniTuple) and isinstance(size.dtype,
                                                         types.Integer):
        def dirichlet_impl(alpha, size=None):
            """
            dirichlet(..., size=tuple)
            """
            out = np.empty(size + (len(alpha),))
            dirichlet_arr(alpha, out)
            return out

    else:
        raise NumbaTypeError(
            "np.random.dirichlet(): size should be int or "
            "tuple of ints or None, got %s" % size
        )

    return dirichlet_impl


@register_jitable
def dirichlet_arr(alpha, out):

    # Gamma distribution method to generate a Dirichlet distribution

    for a_val in iter(alpha):
        if a_val <= 0:
            raise ValueError("dirichlet: alpha must be > 0.0")

    a_len = len(alpha)
    size = out.size
    flat = out.flat
    for i in range(0, size, a_len):
        # calculate gamma random numbers per alpha specifications
        norm = 0  # use this to normalize every the group total to 1
        for k, w in enumerate(alpha):
            flat[i + k] = np.random.gamma(w, 1)
            norm += flat[i + k].item()
        for k, w in enumerate(alpha):
            flat[i + k] /= norm


# ------------------------------------------------------------------------
# np.random.noncentral_chisquare


@overload(np.random.noncentral_chisquare)
def noncentral_chisquare(df, nonc):
    if isinstance(df, (types.Float, types.Integer)) and isinstance(
            nonc, (types.Float, types.Integer)):
        def noncentral_chisquare_impl(df, nonc):
            validate_noncentral_chisquare_input(df, nonc)
            return noncentral_chisquare_single(df, nonc)

        return noncentral_chisquare_impl


@overload(np.random.noncentral_chisquare)
def noncentral_chisquare(df, nonc, size=None):
     if size in (None, types.none):
         def noncentral_chisquare_impl(df, nonc, size=None):
             validate_noncentral_chisquare_input(df, nonc)
             return noncentral_chisquare_single(df, nonc)
         return noncentral_chisquare_impl
     elif isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
                                              and isinstance(size.dtype,
                                                             types.Integer)):

         def noncentral_chisquare_impl(df, nonc, size=None):
             validate_noncentral_chisquare_input(df, nonc)
             out = np.empty(size)
             out_flat = out.flat
             for idx in range(out.size):
                 out_flat[idx] = noncentral_chisquare_single(df, nonc)
             return out
         return noncentral_chisquare_impl
     else:
         raise NumbaTypeError(
             "np.random.noncentral_chisquare(): size should be int or "
             "tuple of ints or None, got %s" % size
         )


@register_jitable
def noncentral_chisquare_single(df, nonc):
    # identical to numpy implementation from distributions.c
    # https://github.com/numpy/numpy/blob/c65bc212ec1987caefba0ea7efe6a55803318de9/numpy/random/src/distributions/distributions.c#L797

    if np.isnan(nonc):
        return np.nan

    if 1 < df:
        chi2 = np.random.chisquare(df-1)
        n = np.random.standard_normal() + np.sqrt(nonc)
        return chi2 + n * n

    else:
        i = np.random.poisson(nonc/2.0)
        return np.random.chisquare(df + 2 * i)


@register_jitable
def validate_noncentral_chisquare_input(df, nonc):
    if df <= 0:
        raise ValueError("df <= 0")
    if nonc < 0:
        raise ValueError("nonc < 0")