testing.py 5.22 KB
Newer Older
dugupeiwen's avatar
dugupeiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from llvmlite import ir
from llvmlite import binding as ll

from numba.core import datamodel
import unittest


class DataModelTester(unittest.TestCase):
    """
    Test the implementation of a DataModel for a frontend type.
    """
    fe_type = NotImplemented

    def setUp(self):
        self.module = ir.Module()
        self.datamodel = datamodel.default_manager[self.fe_type]

    def test_as_arg(self):
        """
        - Is as_arg() and from_arg() implemented?
        - Are they the inverse of each other?
        """
        fnty = ir.FunctionType(ir.VoidType(), [])
        function = ir.Function(self.module, fnty, name="test_as_arg")
        builder = ir.IRBuilder()
        builder.position_at_end(function.append_basic_block())

        undef_value = ir.Constant(self.datamodel.get_value_type(), None)
        args = self.datamodel.as_argument(builder, undef_value)
        self.assertIsNot(args, NotImplemented, "as_argument returned "
                                               "NotImplementedError")

        if isinstance(args, (tuple, list)):
            def recur_tuplize(args, func=None):
                for arg in args:
                    if isinstance(arg, (tuple, list)):
                        yield tuple(recur_tuplize(arg, func=func))
                    else:
                        if func is None:
                            yield arg
                        else:
                            yield func(arg)

            argtypes = tuple(recur_tuplize(args, func=lambda x: x.type))
            exptypes = tuple(recur_tuplize(
                self.datamodel.get_argument_type()))
            self.assertEqual(exptypes, argtypes)
        else:
            self.assertEqual(args.type,
                             self.datamodel.get_argument_type())

        rev_value = self.datamodel.from_argument(builder, args)
        self.assertEqual(rev_value.type, self.datamodel.get_value_type())

        builder.ret_void()  # end function

        # Ensure valid LLVM generation
        materialized = ll.parse_assembly(str(self.module))
        str(materialized)

    def test_as_return(self):
        """
        - Is as_return() and from_return() implemented?
        - Are they the inverse of each other?
        """
        fnty = ir.FunctionType(ir.VoidType(), [])
        function = ir.Function(self.module, fnty, name="test_as_return")
        builder = ir.IRBuilder()
        builder.position_at_end(function.append_basic_block())

        undef_value = ir.Constant(self.datamodel.get_value_type(), None)
        ret = self.datamodel.as_return(builder, undef_value)
        self.assertIsNot(ret, NotImplemented, "as_return returned "
                                              "NotImplementedError")

        self.assertEqual(ret.type, self.datamodel.get_return_type())

        rev_value = self.datamodel.from_return(builder, ret)
        self.assertEqual(rev_value.type, self.datamodel.get_value_type())

        builder.ret_void()  # end function

        # Ensure valid LLVM generation
        materialized = ll.parse_assembly(str(self.module))
        str(materialized)


class SupportAsDataMixin(object):
    """Test as_data() and from_data()
    """
    # XXX test load_from_data_pointer() as well

    def test_as_data(self):
        fnty = ir.FunctionType(ir.VoidType(), [])
        function = ir.Function(self.module, fnty, name="test_as_data")
        builder = ir.IRBuilder()
        builder.position_at_end(function.append_basic_block())

        undef_value = ir.Constant(self.datamodel.get_value_type(), None)
        data = self.datamodel.as_data(builder, undef_value)
        self.assertIsNot(data, NotImplemented,
                         "as_data returned NotImplemented")

        self.assertEqual(data.type, self.datamodel.get_data_type())

        rev_value = self.datamodel.from_data(builder, data)
        self.assertEqual(rev_value.type,
                         self.datamodel.get_value_type())

        builder.ret_void()  # end function

        # Ensure valid LLVM generation
        materialized = ll.parse_assembly(str(self.module))
        str(materialized)


class NotSupportAsDataMixin(object):
    """Ensure as_data() and from_data() raise NotImplementedError.
    """

    def test_as_data_not_supported(self):
        fnty = ir.FunctionType(ir.VoidType(), [])
        function = ir.Function(self.module, fnty, name="test_as_data")
        builder = ir.IRBuilder()
        builder.position_at_end(function.append_basic_block())

        undef_value = ir.Constant(self.datamodel.get_value_type(), None)
        with self.assertRaises(NotImplementedError):
            data = self.datamodel.as_data(builder, undef_value)
        with self.assertRaises(NotImplementedError):
            rev_data = self.datamodel.from_data(builder, undef_value)


class DataModelTester_SupportAsDataMixin(DataModelTester,
                                         SupportAsDataMixin):
    pass


class DataModelTester_NotSupportAsDataMixin(DataModelTester,
                                            NotSupportAsDataMixin):
    pass


def test_factory(support_as_data=True):
    """A helper for returning a unittest TestCase for testing
    """
    if support_as_data:
        return DataModelTester_SupportAsDataMixin
    else:
        return DataModelTester_NotSupportAsDataMixin