benchmark_dataset.py 41.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
generation. Supported dataset types include:
  - ShareGPT
  - Random (synthetic)
  - Sonnet
  - BurstGPT
  - HuggingFace
  - VisionArena
"""

import base64
import io
import json
import logging
import random
from abc import ABC, abstractmethod
from collections.abc import Mapping
from dataclasses import dataclass
from functools import cache
from io import BytesIO
from typing import Any, Callable, Optional, Union

import numpy as np
import pandas as pd
from datasets import load_dataset
from PIL import Image
from transformers import PreTrainedTokenizerBase

from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.image import convert_image_mode
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer

logger = logging.getLogger(__name__)

# -----------------------------------------------------------------------------
# Data Classes
# -----------------------------------------------------------------------------


@dataclass
class SampleRequest:
    """
    Represents a single inference request for benchmarking.
    """

    prompt: Union[str, Any]
    prompt_len: int
    expected_output_len: int
    multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
    lora_request: Optional[LoRARequest] = None


# -----------------------------------------------------------------------------
# Benchmark Dataset Base Class
# -----------------------------------------------------------------------------


class BenchmarkDataset(ABC):
    DEFAULT_SEED = 0
    IS_MULTIMODAL = False

    def __init__(
        self,
        dataset_path: Optional[str] = None,
        random_seed: int = DEFAULT_SEED,
    ) -> None:
        """
        Initialize the BenchmarkDataset with an optional dataset path and random
        seed.  Args:
            dataset_path (Optional[str]): Path to the dataset. If None, it
            indicates that a default or random dataset might be used.
            random_seed (int): Seed value for reproducible shuffling or
            sampling. Defaults to DEFAULT_SEED.
        """
        self.dataset_path = dataset_path
        # Set the random seed, ensuring that a None value is replaced with the
        # default seed.
        self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
        self.data = None

    def apply_multimodal_chat_transformation(
        self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
    ) -> list[dict]:
        """
        Transform a prompt and optional multimodal content into a chat format.
        This method is used for chat models that expect a specific conversation
        format.
        """
        content = [{"text": prompt, "type": "text"}]
        if mm_content is not None:
            content.append(mm_content)
        return [{"role": "user", "content": content}]

    def load_data(self) -> None:
        """
        Load data from the dataset path into self.data.

        This method must be overridden by subclasses since the method to load
        data will vary depending on the dataset format and source.

        Raises:
            NotImplementedError: If a subclass does not implement this method.
        """
        # TODO (jenniferzhao): add support for downloading data
        raise NotImplementedError("load_data must be implemented in subclasses.")

    def get_random_lora_request(
        self,
        tokenizer: PreTrainedTokenizerBase,
        max_loras: Optional[int] = None,
        lora_path: Optional[str] = None,
    ) -> tuple[Optional[LoRARequest], AnyTokenizer]:
        """
        Optionally select a random LoRA request and return its associated
        tokenizer.

        This method is used when LoRA parameters are provided.  It randomly
        selects a LoRA based on max_loras and retrieves a cached tokenizer for
        that LoRA if available. Otherwise, it returns the base tokenizer.

        Args:
            tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
            LoRA is selected.  max_loras (Optional[int]): The maximum number of
            LoRAs available. If None, LoRA is not used.  lora_path
            (Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
            is not used.

        Returns:
            tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
            element is a LoRARequest (or None if not applicable) and the second
            element is the tokenizer associated with the LoRA request (or the
            base tokenizer).
        """
        if max_loras is None or lora_path is None:
            return None, tokenizer

        # Generate a random LoRA ID in the range [1, max_loras].
        lora_id = random.randint(1, max_loras)
        lora_request = LoRARequest(
            lora_name=str(lora_id),
            lora_int_id=lora_id,
            lora_path=lora_path_on_disk(lora_path),
        )
        if lora_id not in lora_tokenizer_cache:
            lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
        # Return lora_request and the cached tokenizer if available; otherwise,
        # return the base tokenizer
        return lora_request, lora_tokenizer_cache[lora_id] or tokenizer

    @abstractmethod
    def sample(
        self, tokenizer: PreTrainedTokenizerBase, num_requests: int
    ) -> list[SampleRequest]:
        """
        Abstract method to generate sample requests from the dataset.

        Subclasses must override this method to implement dataset-specific logic
        for generating a list of SampleRequest objects.

        Args:
            tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
             for processing the dataset's text.
            num_requests (int): The number of sample requests to generate.

        Returns:
            list[SampleRequest]: A list of sample requests generated from the
            dataset.
        """
        raise NotImplementedError("sample must be implemented in subclasses.")

    def maybe_oversample_requests(
        self, requests: list[SampleRequest], num_requests: int
    ) -> None:
        """
        Oversamples the list of requests if its size is less than the desired
        number.

        Args:
            requests (List[SampleRequest]): The current list of sampled
            requests.  num_requests (int): The target number of requests.
        """
        if len(requests) < num_requests:
            random.seed(self.random_seed)
            additional = random.choices(requests, k=num_requests - len(requests))
            requests.extend(additional)
            logger.info("Oversampled requests to reach %d total samples.", num_requests)


# -----------------------------------------------------------------------------
# Utility Functions and Global Caches
# -----------------------------------------------------------------------------


def is_valid_sequence(
    prompt_len: int,
    output_len: int,
    min_len: int = 4,
    max_prompt_len: int = 1024,
    max_total_len: int = 2048,
    skip_min_output_len_check: bool = False,
) -> bool:
    """
    Validate a sequence based on prompt and output lengths.

    Default pruning criteria are copied from the original `sample_hf_requests`
    and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
    from `sample_requests` in benchmark_throughput.py.
    """
    # Check for invalid conditions
    prompt_too_short = prompt_len < min_len
    output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
    prompt_too_long = prompt_len > max_prompt_len
    combined_too_long = (prompt_len + output_len) > max_total_len

    # Return True if none of the invalid conditions are met
    return not (
        prompt_too_short or output_too_short or prompt_too_long or combined_too_long
    )


@cache
def lora_path_on_disk(lora_path: str) -> str:
    return get_adapter_absolute_path(lora_path)


# Global cache for LoRA tokenizers.
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}


def process_image(image: Any) -> Mapping[str, Any]:
    """
    Process a single image input and return a multimedia content dictionary.

    Supports three input types:

    1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
       containing raw image data.  - Loads the bytes as a PIL.Image.Image.

    2. PIL.Image.Image input: - Converts the image to RGB.  - Saves the image as
       a JPEG in memory.  - Encodes the JPEG data as a base64 string.  - Returns
       a dictionary with the image as a base64 data URL.

    3. String input: - Treats the string as a URL or local file path.  -
       Prepends "file://" if the string doesn't start with "http://" or
       "file://".  - Returns a dictionary with the image URL.

    Raises:
        ValueError: If the input is not a supported type.
    """
    if isinstance(image, dict) and "bytes" in image:
        image = Image.open(BytesIO(image["bytes"]))
    if isinstance(image, Image.Image):
        image = convert_image_mode(image, "RGB")
        with io.BytesIO() as image_data:
            image.save(image_data, format="JPEG")
            image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
        return {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
        }

    if isinstance(image, str):
        image_url = (
            image if image.startswith(("http://", "file://")) else f"file://{image}"
        )
        return {"type": "image_url", "image_url": {"url": image_url}}

    raise ValueError(
        f"Invalid image input {image}. Must be a PIL.Image.Image"
        " or str or dictionary with raw image bytes."
    )


# -----------------------------------------------------------------------------
# Random Dataset Implementation (Synthetic Data)
# -----------------------------------------------------------------------------


class RandomDataset(BenchmarkDataset):
    # Default values copied from benchmark_serving.py for the random dataset.
    DEFAULT_PREFIX_LEN = 0
    DEFAULT_RANGE_RATIO = 0.0
    DEFAULT_INPUT_LEN = 1024
    DEFAULT_OUTPUT_LEN = 128

    def __init__(
        self,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        prefix_len: int = DEFAULT_PREFIX_LEN,
        range_ratio: float = DEFAULT_RANGE_RATIO,
        input_len: int = DEFAULT_INPUT_LEN,
        output_len: int = DEFAULT_OUTPUT_LEN,
        **kwargs,
    ) -> list[SampleRequest]:
        # Enforce range_ratio < 1
        assert range_ratio < 1.0, (
            "random_range_ratio must be < 1.0 to ensure a valid sampling range"
        )

        vocab_size = tokenizer.vocab_size
        num_special_tokens = tokenizer.num_special_tokens_to_add()
        real_input_len = input_len - num_special_tokens

        prefix_token_ids = (
            np.random.randint(0, vocab_size, size=prefix_len).tolist()
            if prefix_len > 0
            else []
        )

        # New sampling logic: [X * (1 - b), X * (1 + b)]
        input_low = int(real_input_len * (1 - range_ratio))
        input_high = int(real_input_len * (1 + range_ratio))
        output_low = int(output_len * (1 - range_ratio))
        output_high = int(output_len * (1 + range_ratio))

        # Add logging for debugging
        logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
        logger.info("Sampling output_len from [%s, %s]", output_low, output_high)

        input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
        output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
        offsets = np.random.randint(0, vocab_size, size=num_requests)

        requests = []
        for i in range(num_requests):
            inner_seq = (
                (offsets[i] + i + np.arange(input_lens[i])) % vocab_size
            ).tolist()
            token_sequence = prefix_token_ids + inner_seq
            prompt = tokenizer.decode(token_sequence)
            # After decoding the prompt we have to encode and decode it again.
            # This is done because in some cases N consecutive tokens
            # give a string tokenized into != N number of tokens.
            # For example for GPT2Tokenizer:
            # [6880, 6881] -> ['Ġcalls', 'here'] ->
            # [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
            # To avoid uncontrolled change of the prompt length,
            # the encoded sequence is truncated before being decode again.
            total_input_len = prefix_len + int(input_lens[i])
            re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
                :total_input_len
            ]
            prompt = tokenizer.decode(re_encoded_sequence)
            total_input_len = len(re_encoded_sequence)
            requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=total_input_len,
                    expected_output_len=int(output_lens[i]),
                )
            )
        return requests


# -----------------------------------------------------------------------------
# ShareGPT Dataset Implementation
# -----------------------------------------------------------------------------


class ShareGPTDataset(BenchmarkDataset):
    """
    Implements the ShareGPT dataset.  Loads data from a JSON file and generates
    sample requests based on conversation turns.
    """

    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)
        self.load_data()

    def load_data(self) -> None:
        if self.dataset_path is None:
            raise ValueError("dataset_path must be provided for loading data.")

        with open(self.dataset_path, encoding="utf-8") as f:
            self.data = json.load(f)
        # Filter entries with at least two conversation turns.
        self.data = [
            entry
            for entry in self.data
            if "conversations" in entry and len(entry["conversations"]) >= 2
        ]
        random.seed(self.random_seed)
        random.shuffle(self.data)

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        lora_path: Optional[str] = None,
        max_loras: Optional[int] = None,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        **kwargs,
    ) -> list:
        samples: list = []
        for entry in self.data:
            if len(samples) >= num_requests:
                break
            prompt, completion = (
                entry["conversations"][0]["value"],
                entry["conversations"][1]["value"],
            )

            lora_request, tokenizer = self.get_random_lora_request(
                tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
            )
            prompt_ids = tokenizer(prompt).input_ids
            completion_ids = tokenizer(completion).input_ids
            prompt_len = len(prompt_ids)
            new_output_len = len(completion_ids) if output_len is None else output_len
            if not is_valid_sequence(
                prompt_len,
                new_output_len,
                skip_min_output_len_check=output_len is not None,
            ):
                continue
            if enable_multimodal_chat:
                prompt = self.apply_multimodal_chat_transformation(prompt, None)
            samples.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=new_output_len,
                    lora_request=lora_request,
                )
            )
        self.maybe_oversample_requests(samples, num_requests)
        return samples


# -----------------------------------------------------------------------------
# Custom Dataset Implementation
# -----------------------------------------------------------------------------


class CustomDataset(BenchmarkDataset):
    """
    Implements the Custom dataset.  Loads data from a JSONL file and generates
    sample requests based on conversation turns. E.g.,
    ```
    {"prompt": "What is the capital of India?"}
    {"prompt": "What is the capital of Iran?"}
    {"prompt": "What is the capital of China?"}
    ```
    """

    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)
        self.load_data()

    def load_data(self) -> None:
        if self.dataset_path is None:
            raise ValueError("dataset_path must be provided for loading data.")

        # self.data will be a list of dictionaries
        # e.g., [{"prompt": "What is the capital of India?"}, ...]
        # This will be the standardized format which load_data()
        # has to convert into depending on the filetype of dataset_path.
        # sample() will assume this standardized format of self.data
        self.data = []

        # Load the JSONL file
        if self.dataset_path.endswith(".jsonl"):
            jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)

            # check if the JSONL file has a 'prompt' column
            if "prompt" not in jsonl_data.columns:
                raise ValueError("JSONL file must contain a 'prompt' column.")

            # Convert each row to a dictionary and append to self.data
            # This will convert the DataFrame to a list of dictionaries
            # where each dictionary corresponds to a row in the DataFrame.
            # This is the standardized format we want for self.data
            for _, row in jsonl_data.iterrows():
                self.data.append(row.to_dict())
        else:
            raise NotImplementedError(
                "Only JSONL format is supported for CustomDataset."
            )

        random.seed(self.random_seed)
        random.shuffle(self.data)

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        lora_path: Optional[str] = None,
        max_loras: Optional[int] = None,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        skip_chat_template: bool = False,
        **kwargs,
    ) -> list:
        sampled_requests = []
        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            prompt = item["prompt"]

            # apply template
            if not skip_chat_template:
                prompt = tokenizer.apply_chat_template(
                    [{"role": "user", "content": prompt}],
                    add_generation_prompt=True,
                    tokenize=False,
                )

            prompt_len = len(tokenizer(prompt).input_ids)
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)

        return sampled_requests


# -----------------------------------------------------------------------------
# Sonnet Dataset Implementation
# -----------------------------------------------------------------------------


class SonnetDataset(BenchmarkDataset):
    """
    Simplified implementation of the Sonnet dataset.  Loads poem lines from a
    text file and generates sample requests.  Default values here copied from
    `benchmark_serving.py` for the sonnet dataset.
    """

    DEFAULT_PREFIX_LEN = 200
    DEFAULT_INPUT_LEN = 550
    DEFAULT_OUTPUT_LEN = 150

    def __init__(
        self,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.load_data()

    def load_data(self) -> None:
        if not self.dataset_path:
            raise ValueError("dataset_path must be provided.")
        with open(self.dataset_path, encoding="utf-8") as f:
            self.data = f.readlines()

    def sample(
        self,
        tokenizer,
        num_requests: int,
        prefix_len: int = DEFAULT_PREFIX_LEN,
        input_len: int = DEFAULT_INPUT_LEN,
        output_len: int = DEFAULT_OUTPUT_LEN,
        return_prompt_formatted: bool = False,
        **kwargs,
    ) -> list:
        # Calculate average token length for a poem line.
        tokenized_lines = [tokenizer(line).input_ids for line in self.data]
        avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)

        # Build the base prompt.
        base_prompt = "Pick as many lines as you can from these poem lines:\n"
        base_msg = [{"role": "user", "content": base_prompt}]
        base_fmt = tokenizer.apply_chat_template(
            base_msg, add_generation_prompt=True, tokenize=False
        )
        base_offset = len(tokenizer(base_fmt).input_ids)
        if input_len <= base_offset:
            raise ValueError(
                f"'input_len' must be higher than the base prompt length "
                f"({base_offset})."
            )

        # Determine how many poem lines to use.
        num_input_lines = round((input_len - base_offset) / avg_len)
        num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
        prefix_lines = self.data[:num_prefix_lines]

        samples = []
        while len(samples) < num_requests:
            extra_lines = random.choices(
                self.data, k=num_input_lines - num_prefix_lines
            )
            prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
            msg = [{"role": "user", "content": prompt}]
            prompt_formatted = tokenizer.apply_chat_template(
                msg, add_generation_prompt=True, tokenize=False
            )
            prompt_len = len(tokenizer(prompt_formatted).input_ids)
            if prompt_len <= input_len:
                samples.append(
                    SampleRequest(
                        prompt=prompt_formatted if return_prompt_formatted else prompt,
                        prompt_len=prompt_len,
                        expected_output_len=output_len,
                    )
                )
        return samples


# -----------------------------------------------------------------------------
# BurstGPT Dataset Implementation
# -----------------------------------------------------------------------------


class BurstGPTDataset(BenchmarkDataset):
    """
    Implements the BurstGPT dataset.  Loads data from a CSV file and generates
    sample requests based on synthetic prompt generation. Only rows with Model
    "GPT-4" and positive response tokens are used.
    """

    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)
        self.load_data()

    def load_data(
        self,
    ):
        if self.dataset_path is None:
            raise ValueError("dataset_path must be provided for loading data.")

        df = pd.read_csv(self.dataset_path)
        # Filter to keep only GPT-4 rows.
        gpt4_df = df[df["Model"] == "GPT-4"]
        # Remove failed requests (where Response tokens is 0 or less).
        gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
        # Sample the desired number of rows.
        self.data = gpt4_df

    def _sample_loaded_data(self, num_requests: int) -> list:
        if num_requests <= len(self.data):
            data = self.data.sample(n=num_requests, random_state=self.random_seed)
        else:
            data = self.data.sample(
                n=num_requests,
                random_state=self.random_seed,
                replace=True,
            )
        # Convert the dataframe to a list of lists.
        return data.values.tolist()

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        max_loras: Optional[int] = None,
        lora_path: Optional[str] = None,
        **kwargs,
    ) -> list[SampleRequest]:
        samples = []
        data = self._sample_loaded_data(num_requests=num_requests)
        for i in range(num_requests):
            input_len = int(data[i][2])
            output_len = int(data[i][3])
            lora_req, tokenizer = self.get_random_lora_request(
                tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
            )
            vocab_size = tokenizer.vocab_size
            # Generate a synthetic prompt: a list of token IDs computed as (i +
            # j) modulo vocab_size.
            token_ids = [(i + j) % vocab_size for j in range(input_len)]
            prompt = tokenizer.decode(token_ids)
            samples.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=input_len,
                    expected_output_len=output_len,
                    lora_request=lora_req,
                )
            )
        return samples


# -----------------------------------------------------------------------------
# HuggingFace Dataset Base Implementation
# -----------------------------------------------------------------------------
class HuggingFaceDataset(BenchmarkDataset):
    """Base class for datasets hosted on HuggingFace."""

    SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()

    def __init__(
        self,
        dataset_path: str,
        dataset_split: str,
        dataset_subset: Optional[str] = None,
        **kwargs,
    ) -> None:
        super().__init__(dataset_path=dataset_path, **kwargs)

        self.dataset_split = dataset_split
        self.dataset_subset = dataset_subset
        self.load_data()

    def load_data(self) -> None:
        """Load data from HuggingFace datasets."""
        self.data = load_dataset(
            self.dataset_path,
            name=self.dataset_subset,
            split=self.dataset_split,
            streaming=True,
        )
        self.data = self.data.shuffle(seed=self.random_seed)


# -----------------------------------------------------------------------------
# Conversation Dataset Implementation
# -----------------------------------------------------------------------------


class ConversationDataset(HuggingFaceDataset):
    """Dataset for conversation data with multimodal support."""

    SUPPORTED_DATASET_PATHS = {
        "lmms-lab/LLaVA-OneVision-Data",
        "Aeala/ShareGPT_Vicuna_unfiltered",
    }
    IS_MULTIMODAL = True

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        **kwargs,
    ) -> list:
        # Filter examples with at least 2 conversations
        filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
        sampled_requests = []
        dynamic_output = output_len is None

        for item in filtered_data:
            if len(sampled_requests) >= num_requests:
                break
            conv = item["conversations"]
            prompt, completion = conv[0]["value"], conv[1]["value"]

            prompt_ids = tokenizer(prompt).input_ids
            completion_ids = tokenizer(completion).input_ids
            prompt_len = len(prompt_ids)
            completion_len = len(completion_ids)
            output_len = completion_len if dynamic_output else output_len
            assert isinstance(output_len, int) and output_len > 0
            if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
                continue
            mm_content = process_image(item["image"]) if "image" in item else None
            if enable_multimodal_chat:
                # Note: when chat is enabled the request prompt_len is no longer
                # accurate and we will be using request output to count the
                # actual prompt len and output len
                prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                    multi_modal_data=mm_content,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests


# -----------------------------------------------------------------------------
# Vision Arena Dataset Implementation
# -----------------------------------------------------------------------------


class VisionArenaDataset(HuggingFaceDataset):
    """
    Vision Arena Dataset.
    """

    DEFAULT_OUTPUT_LEN = 128
    SUPPORTED_DATASET_PATHS = {
        "lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
        "lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
    }
    IS_MULTIMODAL = True

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        **kwargs,
    ) -> list:
        output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
        sampled_requests = []
        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
            if parser_fn is None:
                raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
            prompt = parser_fn(item)
            mm_content = process_image(item["images"][0])
            prompt_len = len(tokenizer(prompt).input_ids)
            if enable_multimodal_chat:
                # Note: when chat is enabled the request prompt_len is no longer
                # accurate and we will be using request output to count the
                # actual prompt len
                prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                    multi_modal_data=mm_content,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests


# -----------------------------------------------------------------------------
# Instruct Coder Dataset Implementation
# -----------------------------------------------------------------------------


class InstructCoderDataset(HuggingFaceDataset):
    """
    InstructCoder Dataset.
    https://huggingface.co/datasets/likaixin/InstructCoder

    InstructCoder is the dataset designed for general code editing.  It consists
    of 114,239 instruction-input-output triplets, and covers multiple distinct
    code editing scenario.
    """

    DEFAULT_OUTPUT_LEN = 200  # this is the average default output length
    SUPPORTED_DATASET_PATHS = {
        "likaixin/InstructCoder",
    }

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        **kwargs,
    ) -> list:
        output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
        sampled_requests = []
        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            prompt = f"{item['input']}\n\n{item['instruction']} Just output \
            the code, do not include any explanation."

            # apply template
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )
            prompt_len = len(tokenizer(prompt).input_ids)
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests


# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------


class MTBenchDataset(HuggingFaceDataset):
    """
    MT-Bench Dataset.
    https://huggingface.co/datasets/philschmid/mt-bench

    We create a single turn dataset for MT-Bench.
    This is similar to Spec decoding benchmark setup in vLLM
    https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
    """  # noqa: E501

    DEFAULT_OUTPUT_LEN = 256  # avg len used in SD bench in vLLM
    SUPPORTED_DATASET_PATHS = {
        "philschmid/mt-bench",
    }

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        enable_multimodal_chat: bool = False,
        **kwargs,
    ) -> list:
        output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
        sampled_requests = []

        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            prompt = item["turns"][0]

            # apply template
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )

            prompt_len = len(tokenizer(prompt).input_ids)
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests


# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------


class AIMODataset(HuggingFaceDataset):
    """
    Dataset class for processing a AIMO dataset with reasoning questions.
    """

    SUPPORTED_DATASET_PATHS = {
        "AI-MO/aimo-validation-aime",
        "AI-MO/NuminaMath-1.5",
        "AI-MO/NuminaMath-CoT",
    }

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        **kwargs,
    ) -> list:
        sampled_requests = []
        dynamic_output = output_len is None

        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            prompt, completion = item["problem"], item["solution"]

            prompt_ids = tokenizer(prompt).input_ids
            completion_ids = tokenizer(completion).input_ids
            prompt_len = len(prompt_ids)
            completion_len = len(completion_ids)
            output_len = completion_len if dynamic_output else output_len
            assert isinstance(output_len, int) and output_len > 0
            if dynamic_output and not is_valid_sequence(
                prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
            ):
                continue
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                    multi_modal_data=None,
                )
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests


# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------


zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.

### User Edits:

{}

### User Excerpt:

{}

### Response:

"""  # noqa: E501


def _format_zeta_prompt(
    sample: dict, original_start_marker: str = "<|editable_region_start|>"
) -> dict:
    """Format the zeta prompt for the Next Edit Prediction (NEP) dataset.

    This function formats examples from the NEP dataset
    into prompts and expected outputs. It could be
    further extended to support more NEP datasets.

    Args:
        sample: The dataset sample containing events,
            inputs, and outputs.
        original_start_marker: The marker indicating the
            start of the editable region. Defaults to
            "<|editable_region_start|>".

    Returns:
        A dictionary with the formatted prompts and expected outputs.
    """
    events = sample["events"]
    input = sample["input"]
    output = sample["output"]
    prompt = zeta_prompt.format(events, input)

    # following the original implementation, extract the focused region
    # from the raw output
    output_start_index = output.find(original_start_marker)
    output_focused_region = output[output_start_index:]
    expected_output = output_focused_region

    return {"prompt": prompt, "expected_output": expected_output}


class NextEditPredictionDataset(HuggingFaceDataset):
    """
    Dataset class for processing a Next Edit Prediction dataset.
    """

    SUPPORTED_DATASET_PATHS = {
        "zed-industries/zeta",
    }
    MAPPING_PROMPT_FUNCS = {
        "zed-industries/zeta": _format_zeta_prompt,
    }

    def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
        formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
        if formatting_prompt_func is None:
            raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
        samples = []
        for sample in self.data:
            sample = formatting_prompt_func(sample)
            samples.append(
                SampleRequest(
                    prompt=sample["prompt"],
                    prompt_len=len(tokenizer(sample["prompt"]).input_ids),
                    expected_output_len=len(
                        tokenizer(sample["expected_output"]).input_ids
                    ),
                )
            )
            if len(samples) >= num_requests:
                break
        self.maybe_oversample_requests(samples, num_requests)
        return samples


# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------


class ASRDataset(HuggingFaceDataset):
    """
    Dataset class for processing a ASR dataset for transcription.
    Tested on the following set:

    +----------------+----------------------------------------+--------------------------+-----------------------------+
    | Dataset        | Domain                                 | Speaking Style           | hf-subset                   |
    +----------------+----------------------------------------+--------------------------+-----------------------------+
    | TED-LIUM       | TED talks                              | Oratory                  | release1, release2, release3|
    |                |                                        |                          | release3-speaker-adaptation |
    | VoxPopuli      | European Parliament                    | Oratory                  | en, de, it, fr,  ...        |
    | LibriSpeech    | Audiobook                              | Narrated                 | "LIUM/tedlium"              |
    | GigaSpeech     | Audiobook, podcast, YouTube            | Narrated, spontaneous    | xs, s, m, l, xl, dev, test  |
    | SPGISpeech     | Financial meetings                     | Oratory, spontaneous     | S, M, L, dev, test          |
    | AMI            | Meetings                               | Spontaneous              | ihm, sdm                    |
    +----------------+----------------------------------------+--------------------------+-----------------------------+

    """  # noqa: E501

    SUPPORTED_DATASET_PATHS = {
        "openslr/librispeech_asr",
        "facebook/voxpopuli",
        "LIUM/tedlium",
        "edinburghcstr/ami",
        "speechcolab/gigaspeech",
        "kensho/spgispeech",
    }

    DEFAULT_OUTPUT_LEN = 128
    IS_MULTIMODAL = True

    # TODO Whisper-specific. Abstract interface when more models are supported.
    TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
    skip_long_audios: bool = True

    def sample(
        self,
        tokenizer: PreTrainedTokenizerBase,
        num_requests: int,
        output_len: Optional[int] = None,
        **kwargs,
    ) -> list:
        import librosa

        output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
        prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
        prompt_len = len(tokenizer(prompt).input_ids)
        sampled_requests = []
        skipped = 0
        for item in self.data:
            if len(sampled_requests) >= num_requests:
                break
            audio = item["audio"]
            y, sr = audio["array"], audio["sampling_rate"]
            duration_s = librosa.get_duration(y=y, sr=sr)
            # Whisper max supported duration
            if self.skip_long_audios and duration_s > 30:
                skipped += 1
                continue

            mm_content = {"audio": (y, sr)}
            sampled_requests.append(
                SampleRequest(
                    prompt=prompt,
                    prompt_len=prompt_len,
                    expected_output_len=output_len,
                    multi_modal_data=mm_content,
                )
            )
        if skipped:
            logger.warning(
                "%d samples discarded from dataset due to"
                " their length being greater than"
                " what Whisper supports.",
                skipped,
            )
        self.maybe_oversample_requests(sampled_requests, num_requests)
        return sampled_requests