backend_request_func.py 19 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# SPDX-License-Identifier: Apache-2.0

import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import Optional, Union

import aiohttp
import huggingface_hub.constants
from tqdm.asyncio import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer,
                          PreTrainedTokenizerFast)

# NOTE(simon): do not import vLLM here so the benchmark script
# can run without vLLM installed.

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)


@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
    model_name: Optional[str] = None
    logprobs: Optional[int] = None
    extra_body: Optional[dict] = None
    multi_modal_content: Optional[dict] = None
    ignore_eos: bool = False


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    output_tokens: int = 0
    ttft: float = 0.0  # Time to first token
    itl: list[float] = field(
        default_factory=list)  # list of inter-token latencies
    tpot: float = 0.0  # avg next-token latencies
    prompt_len: int = 0
    error: str = ""


async def async_request_tgi(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(trust_env=True,
                                     timeout=AIOHTTP_TIMEOUT) as session:
        params = {
            "max_new_tokens": request_func_input.output_len,
            "do_sample": True,
            "temperature": 0.01,  # TGI does not accept 0.0 temperature.
            "top_p": 0.99,  # TGI does not accept 1.0 top_p.
            "truncate": request_func_input.prompt_len,
            "ignore_eos_token": request_func_input.ignore_eos,
        }
        payload = {
            "inputs": request_func_input.prompt,
            "parameters": params,
        }
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len
        if request_func_input.ignore_eos:
            output.output_tokens = request_func_input.output_len
        else:
            output.output_tokens = None

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        chunk_bytes = chunk_bytes.decode("utf-8")

                        # NOTE: Sometimes TGI returns a ping response without
                        # any data, we should skip it.
                        if chunk_bytes.startswith(":"):
                            continue
                        chunk = chunk_bytes.removeprefix("data:")

                        data = json.loads(chunk)
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp -
                                              most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
                    output.generated_text = data["generated_text"]
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(trust_env=True,
                                     timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
            "temperature": 0.0,
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
        }
        if request_func_input.ignore_eos:
            payload["min_length"] = request_func_input.output_len
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = chunk_bytes.decode("utf-8").removeprefix(
                            "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = timestamp - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp -
                                              most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_deepspeed_mii(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    async with aiohttp.ClientSession(trust_env=True,
                                     timeout=AIOHTTP_TIMEOUT) as session:

        payload = {
            "prompt": request_func_input.prompt,
            "max_tokens": request_func_input.output_len,
            "temperature": 0.01,  # deepspeed-mii does not accept 0.0 temp.
            "top_p": 1.0,
        }
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        # NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
        # will use 0 as placeholder.
        # See https://github.com/microsoft/DeepSpeed-MII/pull/311
        output.ttft = 0

        st = time.perf_counter()
        try:
            async with session.post(url=request_func_input.api_url,
                                    json=payload) as response:
                if response.status == 200:
                    parsed_resp = await response.json()
                    output.latency = time.perf_counter() - st
                    if "choices" in parsed_resp:
                        output.generated_text = parsed_resp["choices"][0][
                            "text"]
                    elif "text" in parsed_resp:
                        output.generated_text = parsed_resp["text"][0]
                    else:
                        output.error = ("Unexpected response format: "
                                        "neither 'choices' nor 'text' found")
                        output.success = False
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        ("completions", "profile")
    ), "OpenAI Completions API URL must end with 'completions' or 'profile'."

    async with aiohttp.ClientSession(trust_env=True,
                                     timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model_name \
                if request_func_input.model_name else request_func_input.model,
            "prompt": request_func_input.prompt,
            "temperature": 0.0,
            "max_tokens": request_func_input.output_len,
            "logprobs": request_func_input.logprobs,
            "stream": True,
            "stream_options": {
                "include_usage": True,
            },
        }
        if request_func_input.ignore_eos:
            payload["ignore_eos"] = request_func_input.ignore_eos
        if request_func_input.extra_body:
            payload.update(request_func_input.extra_body)
        headers = {
            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
        }

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload,
                                    headers=headers) as response:
                if response.status == 200:
                    first_chunk_received = False
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = chunk_bytes.decode("utf-8").removeprefix(
                            "data: ")
                        if chunk != "[DONE]":
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if choices := data.get("choices"):
                                # Note that text could be empty here
                                # e.g. for special tokens
                                text = choices[0].get("text")
                                timestamp = time.perf_counter()
                                # First token
                                if not first_chunk_received:
                                    first_chunk_received = True
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp -
                                                      most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += text or ""
                            elif usage := data.get("usage"):
                                output.output_tokens = usage.get(
                                    "completion_tokens")
                    if first_chunk_received:
                        output.success = True
                    else:
                        output.success = False
                        output.error = (
                            "Never received a valid chunk to calculate TTFT."
                            "This response will be marked as failed!")
                    output.generated_text = generated_text
                    output.latency = most_recent_timestamp - st
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


async def async_request_openai_chat_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        ("chat/completions", "profile")
    ), "OpenAI Chat Completions API URL must end with 'chat/completions'."

    async with aiohttp.ClientSession(trust_env=True,
                                     timeout=AIOHTTP_TIMEOUT) as session:
        content = [{"type": "text", "text": request_func_input.prompt}]
        if request_func_input.multi_modal_content:
            content.append(request_func_input.multi_modal_content)
        payload = {
            "model": request_func_input.model_name \
                if request_func_input.model_name else request_func_input.model,
            "messages": [
                {
                    "role": "user",
                    "content": content
                },
            ],
            "temperature": 0.0,
            "max_completion_tokens": request_func_input.output_len,
            "stream": True,
            "stream_options": {
                "include_usage": True,
            },
        }
        if request_func_input.ignore_eos:
            payload["ignore_eos"] = request_func_input.ignore_eos
        if request_func_input.extra_body:
            payload.update(request_func_input.extra_body)
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
        }

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload,
                                    headers=headers) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = chunk_bytes.decode("utf-8").removeprefix(
                            "data: ")
                        if chunk != "[DONE]":
                            timestamp = time.perf_counter()
                            data = json.loads(chunk)

                            if choices := data.get("choices"):
                                content = choices[0]["delta"].get("content")
                                # First token
                                if ttft == 0.0:
                                    ttft = timestamp - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp -
                                                      most_recent_timestamp)

                                generated_text += content or ""
                            elif usage := data.get("usage"):
                                output.output_tokens = usage.get(
                                    "completion_tokens")

                            most_recent_timestamp = timestamp

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = most_recent_timestamp - st
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


def get_model(pretrained_model_name_or_path: str) -> str:
    if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
        from modelscope import snapshot_download

        from vllm.model_executor.model_loader.weight_utils import get_lock

        # Use file lock to prevent multiple processes from
        # downloading the same model weights at the same time.
        with get_lock(pretrained_model_name_or_path):
            model_path = snapshot_download(
                model_id=pretrained_model_name_or_path,
                local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
                ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])

            return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
    tokenizer_mode: str = "auto",
    trust_remote_code: bool = False,
    **kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
    if pretrained_model_name_or_path is not None and not os.path.exists(
            pretrained_model_name_or_path):
        pretrained_model_name_or_path = get_model(
            pretrained_model_name_or_path)
    if tokenizer_mode == "slow":
        if kwargs.get("use_fast", False):
            raise ValueError(
                "Cannot use the fast tokenizer in slow tokenizer mode.")
        kwargs["use_fast"] = False
    if tokenizer_mode == "mistral":
        try:
            from vllm.transformers_utils.tokenizer import MistralTokenizer
        except ImportError as e:
            raise ImportError("MistralTokenizer requires vllm package.\n"
                              "Please install it with `pip install vllm` "
                              "to use mistral tokenizer mode.") from e
        return MistralTokenizer.from_pretrained(
            str(pretrained_model_name_or_path))
    else:
        return AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=trust_remote_code,
            **kwargs,
        )


ASYNC_REQUEST_FUNCS = {
    "tgi": async_request_tgi,
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
    "deepspeed-mii": async_request_deepspeed_mii,
    "openai": async_request_openai_completions,
    "openai-chat": async_request_openai_chat_completions,
    "tensorrt-llm": async_request_trt_llm,
    "scalellm": async_request_openai_completions,
    "sglang": async_request_openai_completions,
}

OPENAI_COMPATIBLE_BACKENDS = [
    k for k, v in ASYNC_REQUEST_FUNCS.items()
    if v in (async_request_openai_completions,
             async_request_openai_chat_completions)
]