benchmark_serving.py 48.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput.

On the server side, run one of the following commands:
    vLLM OpenAI API server
    vllm serve <your_model> \
        --swap-space 16 \
        --disable-log-requests

On the client side, run:
    python benchmarks/benchmark_serving.py \
        --backend <backend> \
        --model <your_model> \
        --dataset-name sharegpt \
        --dataset-path <path to dataset> \
        --request-rate <request_rate> \ # By default <request_rate> is inf
        --num-prompts <num_prompts> # By default <num_prompts> is 1000

    when using tgi backend, add
        --endpoint /generate_stream
    to the end of the command above.
"""

import argparse
import asyncio
import gc
import json
import os
import random
import time
import warnings
from collections.abc import AsyncGenerator, Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal, Optional

import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase

from backend_request_func import (
    ASYNC_REQUEST_FUNCS,
    OPENAI_COMPATIBLE_BACKENDS,
    RequestFuncInput,
    RequestFuncOutput,
)

try:
    from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
    from backend_request_func import get_tokenizer

try:
    from vllm.utils import FlexibleArgumentParser
except ImportError:
    from argparse import ArgumentParser as FlexibleArgumentParser

from benchmark_dataset import (
    AIMODataset,
    ASRDataset,
    BurstGPTDataset,
    ConversationDataset,
    CustomDataset,
    HuggingFaceDataset,
    InstructCoderDataset,
    MTBenchDataset,
    NextEditPredictionDataset,
    RandomDataset,
    SampleRequest,
    ShareGPTDataset,
    SonnetDataset,
    VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json

MILLISECONDS_TO_SECONDS_CONVERSION = 1000


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
    request_throughput: float
    request_goodput: float
    output_throughput: float
    total_token_throughput: float
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    percentiles_ttft_ms: list[tuple[float, float]]
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    percentiles_tpot_ms: list[tuple[float, float]]
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    percentiles_itl_ms: list[tuple[float, float]]
    # E2EL stands for end-to-end latency per request.
    # It is the time taken on the client side from sending
    # a request to receiving a complete response.
    mean_e2el_ms: float
    median_e2el_ms: float
    std_e2el_ms: float
    percentiles_e2el_ms: list[tuple[float, float]]


def _get_current_request_rate(
    ramp_up_strategy: Optional[Literal["linear", "exponential"]],
    ramp_up_start_rps: Optional[int],
    ramp_up_end_rps: Optional[int],
    request_index: int,
    total_requests: int,
    request_rate: float,
) -> float:
    if (
        ramp_up_strategy
        and ramp_up_start_rps is not None
        and ramp_up_end_rps is not None
    ):
        progress = request_index / max(total_requests - 1, 1)
        if ramp_up_strategy == "linear":
            increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
            return ramp_up_start_rps + increase
        elif ramp_up_strategy == "exponential":
            ratio = ramp_up_end_rps / ramp_up_start_rps
            return ramp_up_start_rps * (ratio**progress)
        else:
            raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
    return request_rate


async def get_request(
    input_requests: list[SampleRequest],
    request_rate: float,
    burstiness: float = 1.0,
    ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
    ramp_up_start_rps: Optional[int] = None,
    ramp_up_end_rps: Optional[int] = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
    """
    Asynchronously generates requests at a specified rate
    with OPTIONAL burstiness and OPTIONAL ramp-up strategy.

    Args:
        input_requests:
            A list of input requests, each represented as a SampleRequest.
        request_rate:
            The rate at which requests are generated (requests/s).
        burstiness (optional):
            The burstiness factor of the request generation.
            Only takes effect when request_rate is not inf.
            Default value is 1, which follows a Poisson process.
            Otherwise, the request intervals follow a gamma distribution.
            A lower burstiness value (0 < burstiness < 1) results
            in more bursty requests, while a higher burstiness value
            (burstiness > 1) results in a more uniform arrival of requests.
         ramp_up_strategy (optional):
            The ramp-up strategy. Can be "linear" or "exponential".
            If None, uses constant request rate (specified by request_rate).
        ramp_up_start_rps (optional):
            The starting request rate for ramp-up.
        ramp_up_end_rps (optional):
            The ending request rate for ramp-up.
    """
    assert burstiness > 0, (
        f"A positive burstiness factor is expected, but given {burstiness}."
    )
    # Convert to list to get length for ramp-up calculations
    if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
        input_requests = list(input_requests)

    total_requests = len(input_requests)
    request_index = 0

    for request in input_requests:
        current_request_rate = _get_current_request_rate(
            ramp_up_strategy,
            ramp_up_start_rps,
            ramp_up_end_rps,
            request_index,
            total_requests,
            request_rate,
        )

        yield request, current_request_rate

        request_index += 1

        if current_request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        theta = 1.0 / (current_request_rate * burstiness)

        # Sample the request interval from the gamma distribution.
        # If burstiness is 1, it follows exponential distribution.
        interval = np.random.gamma(shape=burstiness, scale=theta)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: list[SampleRequest],
    outputs: list[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
    selected_percentile_metrics: list[str],
    selected_percentiles: list[float],
    goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]:
    actual_output_lens: list[int] = []
    total_input = 0
    completed = 0
    good_completed = 0
    itls: list[float] = []
    tpots: list[float] = []
    all_tpots: list[float] = []
    ttfts: list[float] = []
    e2els: list[float] = []
    for i in range(len(outputs)):
        if outputs[i].success:
            output_len = outputs[i].output_tokens

            if not output_len:
                # We use the tokenizer to count the number of output tokens
                # for some serving backends instead of looking at
                # len(outputs[i].itl) since multiple output tokens may be
                # bundled together
                # Note : this may inflate the output token count slightly
                output_len = len(
                    tokenizer(
                        outputs[i].generated_text, add_special_tokens=False
                    ).input_ids
                )
            actual_output_lens.append(output_len)
            total_input += input_requests[i].prompt_len
            tpot = 0
            if output_len > 1:
                latency_minus_ttft = outputs[i].latency - outputs[i].ttft
                tpot = latency_minus_ttft / (output_len - 1)
                tpots.append(tpot)
            # Note: if output_len <= 1, we regard tpot as 0 for goodput
            all_tpots.append(tpot)
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
            e2els.append(outputs[i].latency)
            completed += 1
        else:
            actual_output_lens.append(0)

    if goodput_config_dict:
        valid_metrics = []
        slo_values = []

        if "ttft" in goodput_config_dict:
            valid_metrics.append(ttfts)
            slo_values.append(
                goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )
        if "tpot" in goodput_config_dict:
            valid_metrics.append(all_tpots)
            slo_values.append(
                goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )
        if "e2el" in goodput_config_dict:
            valid_metrics.append(e2els)
            slo_values.append(
                goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
            )

        for req_metric in zip(*valid_metrics):
            is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
            if is_good_req:
                good_completed += 1

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
        total_output=sum(actual_output_lens),
        request_throughput=completed / dur_s,
        request_goodput=good_completed / dur_s,
        output_throughput=sum(actual_output_lens) / dur_s,
        total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        percentiles_ttft_ms=[
            (p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        percentiles_tpot_ms=[
            (p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_itl_ms=np.mean(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        percentiles_itl_ms=[
            (p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
        ],
        mean_e2el_ms=np.mean(e2els or 0) * 1000,
        std_e2el_ms=np.std(e2els or 0) * 1000,
        median_e2el_ms=np.median(e2els or 0) * 1000,
        percentiles_e2el_ms=[
            (p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
        ],
    )

    return metrics, actual_output_lens


async def benchmark(
    backend: str,
    api_url: str,
    base_url: str,
    model_id: str,
    model_name: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: list[SampleRequest],
    logprobs: Optional[int],
    request_rate: float,
    burstiness: float,
    disable_tqdm: bool,
    profile: bool,
    selected_percentile_metrics: list[str],
    selected_percentiles: list[float],
    ignore_eos: bool,
    goodput_config_dict: dict[str, float],
    max_concurrency: Optional[int],
    lora_modules: Optional[Iterable[str]],
    extra_body: Optional[dict],
    ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
    ramp_up_start_rps: Optional[int] = None,
    ramp_up_end_rps: Optional[int] = None,
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len, test_mm_content = (
        input_requests[0].prompt,
        input_requests[0].prompt_len,
        input_requests[0].expected_output_len,
        input_requests[0].multi_modal_data,
    )

    assert test_mm_content is None or isinstance(test_mm_content, dict)
    test_input = RequestFuncInput(
        model=model_id,
        model_name=model_name,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=test_output_len,
        logprobs=logprobs,
        multi_modal_content=test_mm_content,
        ignore_eos=ignore_eos,
        extra_body=extra_body,
    )

    test_output = await request_func(request_func_input=test_input)
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

    if lora_modules:
        # For each input request, choose a LoRA module at random.
        lora_modules = iter(
            [random.choice(lora_modules) for _ in range(len(input_requests))]
        )

    if profile:
        print("Starting profiler...")
        profile_input = RequestFuncInput(
            model=model_id,
            model_name=model_name,
            prompt=test_prompt,
            api_url=base_url + "/start_profile",
            prompt_len=test_prompt_len,
            output_len=test_output_len,
            logprobs=logprobs,
            multi_modal_content=test_mm_content,
            ignore_eos=ignore_eos,
            extra_body=extra_body,
        )
        profile_output = await request_func(request_func_input=profile_input)
        if profile_output.success:
            print("Profiler started")

    distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"

    if ramp_up_strategy is not None:
        print(
            f"Traffic ramp-up strategy: {ramp_up_strategy}. Will increase "
            f"RPS from {ramp_up_start_rps} to {ramp_up_end_rps} RPS over "
            "the duration of the benchmark."
        )
    else:
        print(f"Traffic request rate: {request_rate} RPS.")

    print(f"Burstiness factor: {burstiness} ({distribution})")
    print(f"Maximum request concurrency: {max_concurrency}")

    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    # This can be used once the minimum Python version is 3.10 or higher,
    # and it will simplify the code in limited_request_func.
    #    semaphore = (asyncio.Semaphore(max_concurrency)
    #                 if max_concurrency else contextlib.nullcontext())
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

    benchmark_start_time = time.perf_counter()
    tasks: list[asyncio.Task] = []

    rps_change_events = []
    last_int_rps = -1
    if ramp_up_strategy is not None and ramp_up_start_rps is not None:
        last_int_rps = ramp_up_start_rps
        rps_change_events.append(
            {
                "rps": last_int_rps,
                "timestamp": datetime.now().isoformat(),
            }
        )

    async for request, current_request_rate in get_request(
        input_requests,
        request_rate,
        burstiness,
        ramp_up_strategy,
        ramp_up_start_rps,
        ramp_up_end_rps,
    ):
        if ramp_up_strategy is not None:
            current_int_rps = int(current_request_rate)
            if current_int_rps > last_int_rps:
                timestamp = datetime.now().isoformat()
                for rps_val in range(last_int_rps + 1, current_int_rps + 1):
                    rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
                last_int_rps = current_int_rps

        prompt, prompt_len, output_len, mm_content = (
            request.prompt,
            request.prompt_len,
            request.expected_output_len,
            request.multi_modal_data,
        )
        req_model_id, req_model_name = model_id, model_name
        if lora_modules:
            req_lora_module = next(lora_modules)
            req_model_id, req_model_name = req_lora_module, req_lora_module

        request_func_input = RequestFuncInput(
            model=req_model_id,
            model_name=req_model_name,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
            logprobs=logprobs,
            multi_modal_content=mm_content,
            ignore_eos=ignore_eos,
            extra_body=extra_body,
        )
        task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
        tasks.append(asyncio.create_task(task))
    outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)

    if profile:
        print("Stopping profiler...")
        profile_input = RequestFuncInput(
            model=model_id,
            prompt=test_prompt,
            api_url=base_url + "/stop_profile",
            prompt_len=test_prompt_len,
            output_len=test_output_len,
            logprobs=logprobs,
        )
        profile_output = await request_func(request_func_input=profile_input)
        if profile_output.success:
            print("Profiler stopped")

    if pbar is not None:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

    metrics, actual_output_lens = calculate_metrics(
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
        selected_percentile_metrics=selected_percentile_metrics,
        selected_percentiles=selected_percentiles,
        goodput_config_dict=goodput_config_dict,
    )

    print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    if goodput_config_dict:
        print(
            "{:<40} {:<10.2f}".format(
                "Request goodput (req/s):", metrics.request_goodput
            )
        )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Total Token throughput (tok/s):", metrics.total_token_throughput
        )
    )

    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
        "request_throughput": metrics.request_throughput,
        "request_goodput": metrics.request_goodput if goodput_config_dict else None,
        "output_throughput": metrics.output_throughput,
        "total_token_throughput": metrics.total_token_throughput,
        "input_lens": [output.prompt_len for output in outputs],
        "output_lens": actual_output_lens,
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
    }

    if rps_change_events:
        result["rps_change_events"] = rps_change_events

    def process_one_metric(
        # E.g., "ttft"
        metric_attribute_name: str,
        # E.g., "TTFT"
        metric_name: str,
        # E.g., "Time to First Token"
        metric_header: str,
    ):
        # This function prints and adds statistics of the specified
        # metric.
        if metric_attribute_name not in selected_percentile_metrics:
            return
        print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
        print(
            "{:<40} {:<10.2f}".format(
                f"Mean {metric_name} (ms):",
                getattr(metrics, f"mean_{metric_attribute_name}_ms"),
            )
        )
        print(
            "{:<40} {:<10.2f}".format(
                f"Median {metric_name} (ms):",
                getattr(metrics, f"median_{metric_attribute_name}_ms"),
            )
        )
        result[f"mean_{metric_attribute_name}_ms"] = getattr(
            metrics, f"mean_{metric_attribute_name}_ms"
        )
        result[f"median_{metric_attribute_name}_ms"] = getattr(
            metrics, f"median_{metric_attribute_name}_ms"
        )
        result[f"std_{metric_attribute_name}_ms"] = getattr(
            metrics, f"std_{metric_attribute_name}_ms"
        )
        for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
            p_word = str(int(p)) if int(p) == p else str(p)
            print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
            result[f"p{p_word}_{metric_attribute_name}_ms"] = value

    process_one_metric("ttft", "TTFT", "Time to First Token")
    process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
    process_one_metric("itl", "ITL", "Inter-token Latency")
    process_one_metric("e2el", "E2EL", "End-to-end Latency")

    print("=" * 50)

    return result


def check_goodput_args(args):
    # Check and parse goodput arguments
    goodput_config_dict = {}
    VALID_NAMES = ["ttft", "tpot", "e2el"]
    if args.goodput:
        goodput_config_dict = parse_goodput(args.goodput)
        for slo_name, slo_val in goodput_config_dict.items():
            if slo_name not in VALID_NAMES:
                raise ValueError(
                    f"Invalid metric name found, {slo_name}: {slo_val}. "
                    "The service level objective name should be one of "
                    f"{str(VALID_NAMES)}. "
                )
            if slo_val < 0:
                raise ValueError(
                    f"Invalid value found, {slo_name}: {slo_val}. "
                    "The service level objective value should be "
                    "non-negative."
                )
    return goodput_config_dict


def parse_goodput(slo_pairs):
    goodput_config_dict = {}
    try:
        for slo_pair in slo_pairs:
            slo_name, slo_val = slo_pair.split(":")
            goodput_config_dict[slo_name] = float(slo_val)
    except ValueError as err:
        raise argparse.ArgumentTypeError(
            "Invalid format found for service level objectives. "
            'Specify service level objectives for goodput as "KEY:VALUE" '
            "pairs, where the key is a metric name, and the value is a "
            "number in milliseconds."
        ) from err
    return goodput_config_dict


def save_to_pytorch_benchmark_format(
    args: argparse.Namespace, results: dict[str, Any], file_name: str
) -> None:
    metrics = [
        "median_ttft_ms",
        "mean_ttft_ms",
        "std_ttft_ms",
        "p99_ttft_ms",
        "mean_tpot_ms",
        "median_tpot_ms",
        "std_tpot_ms",
        "p99_tpot_ms",
        "median_itl_ms",
        "mean_itl_ms",
        "std_itl_ms",
        "p99_itl_ms",
    ]
    # These raw data might be useful, but they are rather big. They can be added
    # later if needed
    ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
    pt_records = convert_to_pytorch_benchmark_format(
        args=args,
        metrics={k: [results[k]] for k in metrics},
        extra_info={
            k: results[k]
            for k in results
            if k not in metrics and k not in ignored_metrics
        },
    )
    if pt_records:
        # Don't use json suffix here as we don't want CI to pick it up
        pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
        write_to_json(pt_file, pt_records)


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

    backend = args.backend
    model_id = args.model
    model_name = args.served_model_name
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
    tokenizer_mode = args.tokenizer_mode

    # Validate ramp-up arguments
    if args.ramp_up_strategy is not None:
        if args.request_rate != float("inf"):
            raise ValueError(
                "When using ramp-up, do not specify --request-rate. "
                "The request rate will be controlled by ramp-up parameters. "
                "Please remove the --request-rate argument."
            )
        if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
            raise ValueError(
                "When using --ramp-up-strategy, both --ramp-up-start-rps and "
                "--ramp-up-end-rps must be specified"
            )
        if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
            raise ValueError("Ramp-up start and end RPS must be non-negative")
        if args.ramp_up_start_rps > args.ramp_up_end_rps:
            raise ValueError("Ramp-up start RPS must be less than end RPS")
        if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
            raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")

    if args.base_url is not None:
        api_url = f"{args.base_url}{args.endpoint}"
        base_url = f"{args.base_url}"
    else:
        api_url = f"http://{args.host}:{args.port}{args.endpoint}"
        base_url = f"http://{args.host}:{args.port}"

    tokenizer = get_tokenizer(
        tokenizer_id,
        tokenizer_mode=tokenizer_mode,
        trust_remote_code=args.trust_remote_code,
    )

    if args.dataset_name is None:
        raise ValueError(
            "Please specify '--dataset-name' and the corresponding "
            "'--dataset-path' if required."
        )

    if args.dataset_name == "custom":
        dataset = CustomDataset(dataset_path=args.dataset_path)
        input_requests = dataset.sample(
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            output_len=args.custom_output_len,
            skip_chat_template=args.custom_skip_chat_template,
        )

    elif args.dataset_name == "sonnet":
        dataset = SonnetDataset(dataset_path=args.dataset_path)
        # For the "sonnet" dataset, formatting depends on the backend.
        if args.backend == "openai-chat":
            input_requests = dataset.sample(
                num_requests=args.num_prompts,
                input_len=args.sonnet_input_len,
                output_len=args.sonnet_output_len,
                prefix_len=args.sonnet_prefix_len,
                tokenizer=tokenizer,
                return_prompt_formatted=False,
            )
        else:
            assert tokenizer.chat_template or tokenizer.default_chat_template, (
                "Tokenizer/model must have chat template for sonnet dataset."
            )
            input_requests = dataset.sample(
                num_requests=args.num_prompts,
                input_len=args.sonnet_input_len,
                output_len=args.sonnet_output_len,
                prefix_len=args.sonnet_prefix_len,
                tokenizer=tokenizer,
                return_prompt_formatted=True,
            )

    elif args.dataset_name == "hf":
        # all following datasets are implemented from the
        # HuggingFaceDataset base class
        if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
            dataset_class = VisionArenaDataset
            args.hf_split = "train"
            args.hf_subset = None
        elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
            dataset_class = InstructCoderDataset
            args.hf_split = "train"
        elif args.dataset_path in MTBenchDataset.SUPPORTED_DATASET_PATHS:
            dataset_class = MTBenchDataset
            args.hf_split = "train"
        elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
            dataset_class = ConversationDataset
        elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
            dataset_class = AIMODataset
            args.hf_split = "train"
        elif args.dataset_path in NextEditPredictionDataset.SUPPORTED_DATASET_PATHS:  # noqa: E501
            dataset_class = NextEditPredictionDataset
            args.hf_split = "train"
        elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
            dataset_class = ASRDataset
            args.hf_split = "train"
        else:
            supported_datasets = set(
                [
                    dataset_name
                    for cls in HuggingFaceDataset.__subclasses__()
                    for dataset_name in cls.SUPPORTED_DATASET_PATHS
                ]
            )
            raise ValueError(
                f"Unsupported dataset path: {args.dataset_path}. "
                "Huggingface dataset only supports dataset_path"
                f" from one of following: {supported_datasets}. "
                "Please consider contributing if you would "
                "like to add support for additional dataset formats."
            )

        if dataset_class.IS_MULTIMODAL and backend not in [
            "openai-chat",
            "openai-audio",
        ]:
            # multi-modal benchmark is only available on OpenAI Chat backend.
            raise ValueError(
                "Multi-modal content is only supported on 'openai-chat' and "
                "'openai-audio' backend."
            )
        input_requests = dataset_class(
            dataset_path=args.dataset_path,
            dataset_subset=args.hf_subset,
            dataset_split=args.hf_split,
            random_seed=args.seed,
        ).sample(
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            output_len=args.hf_output_len,
        )

    else:
        # For datasets that follow a similar structure, use a mapping.
        dataset_mapping = {
            "sharegpt": lambda: ShareGPTDataset(
                random_seed=args.seed, dataset_path=args.dataset_path
            ).sample(
                tokenizer=tokenizer,
                num_requests=args.num_prompts,
                output_len=args.sharegpt_output_len,
            ),
            "burstgpt": lambda: BurstGPTDataset(
                random_seed=args.seed, dataset_path=args.dataset_path
            ).sample(tokenizer=tokenizer, num_requests=args.num_prompts),
            "random": lambda: RandomDataset(dataset_path=args.dataset_path).sample(
                tokenizer=tokenizer,
                num_requests=args.num_prompts,
                prefix_len=args.random_prefix_len,
                input_len=args.random_input_len,
                output_len=args.random_output_len,
                range_ratio=args.random_range_ratio,
            ),
        }

        try:
            input_requests = dataset_mapping[args.dataset_name]()
        except KeyError as err:
            raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
    goodput_config_dict = check_goodput_args(args)

    # Collect the sampling parameters.
    sampling_params = {
        k: v
        for k, v in {
            "top_p": args.top_p,
            "top_k": args.top_k,
            "min_p": args.min_p,
            "temperature": args.temperature,
        }.items()
        if v is not None
    }

    # Sampling parameters are only supported by openai-compatible backend.
    if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
        raise ValueError(
            "Sampling parameters are only supported by openai-compatible backends."
        )

    if "temperature" not in sampling_params:
        sampling_params["temperature"] = 0.0  # Default to greedy decoding.

    if args.backend == "llama.cpp":
        # Disable prompt caching in llama.cpp backend
        sampling_params["cache_prompt"] = False

    # Avoid GC processing "static" data - reduce pause times.
    gc.collect()
    gc.freeze()

    benchmark_result = asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            model_name=model_name,
            tokenizer=tokenizer,
            input_requests=input_requests,
            logprobs=args.logprobs,
            request_rate=args.request_rate,
            burstiness=args.burstiness,
            disable_tqdm=args.disable_tqdm,
            profile=args.profile,
            selected_percentile_metrics=args.percentile_metrics.split(","),
            selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
            ignore_eos=args.ignore_eos,
            goodput_config_dict=goodput_config_dict,
            max_concurrency=args.max_concurrency,
            lora_modules=args.lora_modules,
            extra_body=sampling_params,
            ramp_up_strategy=args.ramp_up_strategy,
            ramp_up_start_rps=args.ramp_up_start_rps,
            ramp_up_end_rps=args.ramp_up_end_rps,
        )
    )

    # Save config and results to json
    if args.save_result or args.append_result:
        result_json: dict[str, Any] = {}

        # Setup
        current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
        result_json["date"] = current_dt
        result_json["backend"] = backend
        result_json["model_id"] = model_id
        result_json["tokenizer_id"] = tokenizer_id
        result_json["num_prompts"] = args.num_prompts

        # Metadata
        if args.metadata:
            for item in args.metadata:
                if "=" in item:
                    kvstring = item.split("=")
                    result_json[kvstring[0].strip()] = kvstring[1].strip()
                else:
                    raise ValueError(
                        "Invalid metadata format. Please use KEY=VALUE format."
                    )
        # Traffic
        result_json["request_rate"] = (
            args.request_rate if args.request_rate < float("inf") else "inf"
        )
        result_json["burstiness"] = args.burstiness
        result_json["max_concurrency"] = args.max_concurrency

        if args.ramp_up_strategy is not None:
            result_json["ramp_up_strategy"] = args.ramp_up_strategy
            result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
            result_json["ramp_up_end_rps"] = args.ramp_up_end_rps

        # Merge with benchmark result
        result_json = {**result_json, **benchmark_result}

        if not args.save_detailed:
            # Remove fields with too many data points
            for field in [
                "input_lens",
                "output_lens",
                "ttfts",
                "itls",
                "generated_texts",
                "errors",
            ]:
                if field in result_json:
                    del result_json[field]
                if field in benchmark_result:
                    del benchmark_result[field]

        # Save to file
        base_model_id = model_id.split("/")[-1]
        max_concurrency_str = (
            f"-concurrency{args.max_concurrency}"
            if args.max_concurrency is not None
            else ""
        )
        if args.ramp_up_strategy is not None:
            file_name = f"{backend}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json"  # noqa
        else:
            file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json"  # noqa
        if args.result_filename:
            file_name = args.result_filename
        if args.result_dir:
            os.makedirs(args.result_dir, exist_ok=True)
            file_name = os.path.join(args.result_dir, file_name)
        with open(
            file_name, mode="a+" if args.append_result else "w", encoding="utf-8"
        ) as outfile:
            # Append a newline.
            if args.append_result and outfile.tell() != 0:
                outfile.write("\n")
            json.dump(result_json, outfile)
        save_to_pytorch_benchmark_format(args, result_json, file_name)


def create_argument_parser():
    parser = FlexibleArgumentParser(
        description="Benchmark the online serving throughput."
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="vllm",
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    # Use 127.0.0.1 here instead of localhost to force the use of ipv4
    parser.add_argument("--host", type=str, default="127.0.0.1")
    parser.add_argument("--port", type=int, default=8000)
    parser.add_argument(
        "--endpoint",
        type=str,
        default="/v1/completions",
        help="API endpoint.",
    )
    parser.add_argument(
        "--dataset-name",
        type=str,
        default="sharegpt",
        choices=["sharegpt", "burstgpt", "sonnet", "random", "hf", "custom"],
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path",
        type=str,
        default=None,
        help="Path to the sharegpt/sonnet dataset. "
        "Or the huggingface dataset ID if using HF dataset.",
    )
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )

    parser.add_argument(
        "--model",
        type=str,
        required=True,
        help="Name of the model.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer, if not using the default tokenizer.",  # noqa: E501
    )
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process.",
    )
    parser.add_argument(
        "--logprobs",
        type=int,
        default=None,
        help=(
            "Number of logprobs-per-token to compute & return as part of "
            "the request. If unspecified, then either (1) if beam search "
            "is disabled, no logprobs are computed & a single dummy "
            "logprob is returned for each token; or (2) if beam search "
            "is enabled 1 logprob per token is computed"
        ),
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, "
        "then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process or gamma distribution "
        "to synthesize the request arrival times.",
    )
    parser.add_argument(
        "--burstiness",
        type=float,
        default=1.0,
        help="Burstiness factor of the request generation. "
        "Only take effect when request_rate is not inf. "
        "Default value is 1, which follows Poisson process. "
        "Otherwise, the request intervals follow a gamma distribution. "
        "A lower burstiness value (0 < burstiness < 1) results in more "
        "bursty requests. A higher burstiness value (burstiness > 1) "
        "results in a more uniform arrival of requests.",
    )
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument(
        "--trust-remote-code",
        action="store_true",
        help="Trust remote code from huggingface",
    )
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "VLLM_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--save-result",
        action="store_true",
        help="Specify to save benchmark results to a json file",
    )
    parser.add_argument(
        "--save-detailed",
        action="store_true",
        help="When saving the results, whether to include per request "
        "information such as response, error, ttfs, tpots, etc.",
    )
    parser.add_argument(
        "--append-result",
        action="store_true",
        help="Append the benchmark result to the existing json file.",
    )
    parser.add_argument(
        "--metadata",
        metavar="KEY=VALUE",
        nargs="*",
        help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
        "for metadata of this run to be saved in the result JSON file "
        "for record keeping purposes.",
    )
    parser.add_argument(
        "--result-dir",
        type=str,
        default=None,
        help="Specify directory to save benchmark json results."
        "If not specified, results are saved in the current directory.",
    )
    parser.add_argument(
        "--result-filename",
        type=str,
        default=None,
        help="Specify the filename to save benchmark json results."
        "If not specified, results will be saved in "
        "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
        " format.",
    )
    parser.add_argument(
        "--ignore-eos",
        action="store_true",
        help="Set ignore_eos flag when sending the benchmark request."
        "Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
    )
    parser.add_argument(
        "--percentile-metrics",
        type=str,
        default="ttft,tpot,itl",
        help="Comma-separated list of selected metrics to report percentils. "
        "This argument specifies the metrics to report percentiles. "
        'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
        'Default value is "ttft,tpot,itl".',
    )
    parser.add_argument(
        "--metric-percentiles",
        type=str,
        default="99",
        help="Comma-separated list of percentiles for selected metrics. "
        'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
        'Default value is "99". '
        'Use "--percentile-metrics" to select metrics.',
    )
    parser.add_argument(
        "--goodput",
        nargs="+",
        required=False,
        help='Specify service level objectives for goodput as "KEY:VALUE" '
        "pairs, where the key is a metric name, and the value is in "
        'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
        "separated by spaces. Allowed request level metric names are "
        '"ttft", "tpot", "e2el". For more context on the definition of '
        "goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
        "and the blog: https://hao-ai-lab.github.io/blogs/distserve",
    )

    # group for dataset specific arguments
    custom_group = parser.add_argument_group("custom dataset options")
    custom_group.add_argument(
        "--custom-output-len",
        type=int,
        default=256,
        help="Number of output tokens per request, used only for custom dataset.",
    )
    custom_group.add_argument(
        "--custom-skip-chat-template",
        action="store_true",
        help="Skip applying chat template to prompt, used only for custom dataset.",
    )

    sonnet_group = parser.add_argument_group("sonnet dataset options")
    sonnet_group.add_argument(
        "--sonnet-input-len",
        type=int,
        default=550,
        help="Number of input tokens per request, used only for sonnet dataset.",
    )
    sonnet_group.add_argument(
        "--sonnet-output-len",
        type=int,
        default=150,
        help="Number of output tokens per request, used only for sonnet dataset.",
    )
    sonnet_group.add_argument(
        "--sonnet-prefix-len",
        type=int,
        default=200,
        help="Number of prefix tokens per request, used only for sonnet dataset.",
    )

    sharegpt_group = parser.add_argument_group("sharegpt dataset options")
    sharegpt_group.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length "
        "from the ShareGPT dataset.",
    )

    random_group = parser.add_argument_group("random dataset options")
    random_group.add_argument(
        "--random-input-len",
        type=int,
        default=1024,
        help="Number of input tokens per request, used only for random sampling.",
    )
    random_group.add_argument(
        "--random-output-len",
        type=int,
        default=128,
        help="Number of output tokens per request, used only for random sampling.",
    )
    random_group.add_argument(
        "--random-range-ratio",
        type=float,
        default=0.0,
        help="Range ratio for sampling input/output length, "
        "used only for random sampling. Must be in the range [0, 1) to define "
        "a symmetric sampling range"
        "[length * (1 - range_ratio), length * (1 + range_ratio)].",
    )
    random_group.add_argument(
        "--random-prefix-len",
        type=int,
        default=0,
        help=(
            "Number of fixed prefix tokens before the random context "
            "in a request. "
            "The total input length is the sum of `random-prefix-len` and "
            "a random "
            "context length sampled from [input_len * (1 - range_ratio), "
            "input_len * (1 + range_ratio)]."
        ),
    )

    hf_group = parser.add_argument_group("hf dataset options")
    hf_group.add_argument(
        "--hf-subset", type=str, default=None, help="Subset of the HF dataset."
    )
    hf_group.add_argument(
        "--hf-split", type=str, default=None, help="Split of the HF dataset."
    )
    hf_group.add_argument(
        "--hf-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output lengths "
        "from the sampled HF dataset.",
    )

    sampling_group = parser.add_argument_group("sampling parameters")
    sampling_group.add_argument(
        "--top-p",
        type=float,
        default=None,
        help="Top-p sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--top-k",
        type=int,
        default=None,
        help="Top-k sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--min-p",
        type=float,
        default=None,
        help="Min-p sampling parameter. Only has effect on openai-compatible backends.",
    )
    sampling_group.add_argument(
        "--temperature",
        type=float,
        default=None,
        help="Temperature sampling parameter. Only has effect on "
        "openai-compatible backends. If not specified, default to greedy "
        "decoding (i.e. temperature==0.0).",
    )

    parser.add_argument(
        "--tokenizer-mode",
        type=str,
        default="auto",
        choices=["auto", "slow", "mistral", "custom"],
        help='The tokenizer mode.\n\n* "auto" will use the '
        'fast tokenizer if available.\n* "slow" will '
        "always use the slow tokenizer. \n* "
        '"mistral" will always use the `mistral_common` tokenizer. \n*'
        '"custom" will use --tokenizer to select the preregistered tokenizer.',
    )

    parser.add_argument(
        "--served-model-name",
        type=str,
        default=None,
        help="The model name used in the API. "
        "If not specified, the model name will be the "
        "same as the ``--model`` argument. ",
    )

    parser.add_argument(
        "--lora-modules",
        nargs="+",
        default=None,
        help="A subset of LoRA module names passed in when "
        "launching the server. For each request, the "
        "script chooses a LoRA module at random.",
    )

    parser.add_argument(
        "--ramp-up-strategy",
        type=str,
        default=None,
        choices=["linear", "exponential"],
        help="The ramp-up strategy. This would be used to "
        "ramp up the request rate from initial RPS to final "
        "RPS rate (specified by --ramp-up-start-rps and --ramp-up-end-rps). "
        "over the duration of the benchmark.",
    )
    parser.add_argument(
        "--ramp-up-start-rps",
        type=int,
        default=None,
        help="The starting request rate for ramp-up (RPS). "
        "Needs to be specified when --ramp-up-strategy is used.",
    )
    parser.add_argument(
        "--ramp-up-end-rps",
        type=int,
        default=None,
        help="The ending request rate for ramp-up (RPS). "
        "Needs to be specified when --ramp-up-strategy is used.",
    )

    return parser


if __name__ == "__main__":
    parser = create_argument_parser()
    args = parser.parse_args()
    main(args)