benchmark_throughput_0.6.2.py 30.5 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
"""Benchmark offline inference throughput."""
import argparse
import json
import random
import time
from typing import List, Optional, Tuple

import numpy as np
import torch
import uvloop
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          PreTrainedTokenizerBase)

from vllm.inputs import PromptInputs
from vllm.engine.arg_utils import DEVICE_OPTIONS, AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
    build_async_engine_client_from_engine_args)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser, merge_async_iterators


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data["conversations"][0]["value"],
                data["conversations"][1]["value"]) for data in dataset]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
        prompt_token_ids = tokenizer(prompt).input_ids
        completion = dataset[i][1]
        completion_token_ids = tokenizer(completion).input_ids
        prompt_len = len(prompt_token_ids)
        output_len = len(completion_token_ids
                         ) if fixed_output_len is None else fixed_output_len
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    return filtered_dataset


def run_vllm(
    warmup_requests: List[Tuple[str, int, int]],
    requests_json: List[Tuple[str, int, int]],
    model: str,
    tokenizer: str,
    quantization: Optional[str],
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
    trust_remote_code: bool,
    dtype: str,
    max_model_len: Optional[int],
    enforce_eager: bool,
    kv_cache_dtype: str,
    quantization_param_path: Optional[str],
    device: str,
    enable_prefix_caching: bool,
    enable_chunked_prefill: bool,
    max_num_batched_tokens: int,
    distributed_executor_backend: Optional[str],
    gpu_memory_utilization: float = 0.9,
    num_scheduler_steps: int = 1,
    use_v2_block_manager: bool = False,
    download_dir: Optional[str] = None,
    load_format: str = EngineArgs.load_format,
    disable_async_output_proc: bool = False,
    use_new_beam_search_impl: bool = False,
) -> float:
    from vllm import LLM, SamplingParams
    llm = LLM(
        model=model,
        tokenizer=tokenizer,
        quantization=quantization,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
        trust_remote_code=trust_remote_code,
        dtype=dtype,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        enforce_eager=enforce_eager,
        kv_cache_dtype=kv_cache_dtype,
        quantization_param_path=quantization_param_path,
        device=device,
        enable_prefix_caching=enable_prefix_caching,
        download_dir=download_dir,
        enable_chunked_prefill=enable_chunked_prefill,
        max_num_batched_tokens=max_num_batched_tokens,
        distributed_executor_backend=distributed_executor_backend,
        load_format=load_format,
        num_scheduler_steps=num_scheduler_steps,
        use_v2_block_manager=use_v2_block_manager,
        disable_async_output_proc=disable_async_output_proc,
    )



    # warmup
    warmup_prompts = []
    warmup_sampling_params = []
    for prompt, _, output_len in warmup_requests:
        warmup_prompts.append(prompt)
        warmup_sampling_params.append(
            SamplingParams(
                n=n,
                temperature=0.0 if use_beam_search else 1.0,
                top_p=1.0,
                use_beam_search=use_beam_search,
                ignore_eos=True,
                max_tokens=output_len,
            ))
        
    print("Warming up...")
    for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
        llm.generate(warmup_prompts, warmup_sampling_params, use_tqdm=True)
    
    info_json={}
    for ELEprompt in args.num_prompts:
        for ELEinput,ELEoutput  in zip(args.input_len,args.output_len):
            info={}
            requests=requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]
            # Add the requests to the engine.
            prompts: List[str] = []
            sampling_params: List[SamplingParams] = []
            for prompt, _, output_len in requests:
                prompts.append(prompt)
                sampling_params.append(
                    SamplingParams(
                        n=n,
                        temperature=0.0 if use_beam_search else 1.0,
                        top_p=1.0,
                        use_beam_search=use_beam_search,
                        ignore_eos=True,
                        max_tokens=output_len,
                    ))            

            if not use_new_beam_search_impl:
                start = time.perf_counter()
                real_output = llm.generate(prompts, sampling_params, use_tqdm=True)
                end = time.perf_counter()
            else:
                assert use_beam_search
                prompts = [prompt for prompt, _, _ in requests]
                # output_len should be the same for all requests.
                output_len = requests[0][2]
                for prompt, input_len, _output_len in requests:
                    assert _output_len == output_len
                start = time.perf_counter()
                llm.beam_search(prompts,
                                beam_width=n,
                                max_tokens=output_len,
                                ignore_eos=True)
                end = time.perf_counter()
            
            total_ttfts = []
            total_tpops = []
            total_output_token_throughput = []
            total_inout_token_throughput = []

            for output in real_output:

                ttft_ = output.metrics.first_token_time - output.metrics.arrival_time
                tpop_ = (output.metrics.finished_time - output.metrics.arrival_time - ttft_) / (ELEoutput-1)
                output_token_throughput = (ELEoutput) / (output.metrics.finished_time - output.metrics.arrival_time)
                inout_token_throughput = (ELEoutput + ELEinput) / (output.metrics.finished_time - output.metrics.arrival_time)
                total_ttfts.append(ttft_)
                total_tpops.append(tpop_)
                total_output_token_throughput.append(output_token_throughput)
                total_inout_token_throughput.append(inout_token_throughput)


            # total_num_tokens = sum(request.prompt_len + request.expected_output_len
            #     for request in requests)
            # total_output_tokens = sum(request.expected_output_len
            #     for request in requests)

            total_num_tokens = sum(prompt_len + output_len
                for _, prompt_len, output_len in requests)
            total_output_tokens = sum(output_len
                for _, prompt_len, output_len in requests)    
            info["elapsed_time"] = np.around(end - start,2)
            info["Throughput"] = np.around(len(requests) / info['elapsed_time'],2)
            info["total_tokens"] = np.around(total_num_tokens / info['elapsed_time'],2)
            info["output_tokens"] = np.around(total_output_tokens / info['elapsed_time'],2)
            
            info["ttft_mean"] = np.around(np.mean(total_ttfts),5)
            info["ttft_median"] = np.around(np.median(total_ttfts or 0),5)
            info["ttft_p99"] = np.around(np.percentile(total_ttfts or 0, 99),5)

            info["tpop_mean"] = np.around(np.mean(total_tpops),4)
            info["tpop_median"] = np.around(np.median(total_tpops or 0),5)
            info["tpop_p99"] = np.around(np.percentile(total_tpops or 0, 99),5)

            info["output_token_throughput_mean"]  = np.around(np.mean(total_output_token_throughput),2)
            info["output_token_throughput_median"]  = np.around(np.median(total_output_token_throughput or 0),2)
            info["output_token_throughput_p99"]  = np.around(np.percentile(total_output_token_throughput or 0, 99),2)

            info["inout_token_throughput_mean"] = np.around(np.mean(total_inout_token_throughput),2)
            info["inout_token_throughput_median"] = np.around(np.median(total_inout_token_throughput or 0),2)
            info["inout_token_throughput_p99"] = np.around(np.percentile(total_inout_token_throughput or 0, 99),2)

            
            info_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)] = info
            print("promt:{},input:{},output:{}".format(ELEprompt,ELEinput,ELEoutput))
            print(f"Latency: {info['elapsed_time']:.2f} s")
            print(f"Throughput: {len(requests) / info['elapsed_time']:.2f} requests/s, "
                f"{total_num_tokens / info['elapsed_time']:.2f} total tokens/s, "
                f"{total_output_tokens / info['elapsed_time']:.2f} output tokens/s")
            print("==============================================")
            print(f"total_out_tokens: {total_output_tokens: .2f} tokens")
            print(f"elapsed_time: {info['elapsed_time']: .2f} s")     # 总耗时
            print(f"TTFT_mean: {info['ttft_mean']: .5f} s")           # 首字延时
            print(f"ttft_p99: {info['ttft_p99']: .5f} s")
            print(f"ttft_median: {info['ttft_median']: .5f} s")
            print(f"TPOP_mean: {info['tpop_mean']: .5f} s")           # 单字decode时间
            print(f"tpop_median: {info['tpop_median']: .5f} s")
            print(f"tpop_p99: {info['tpop_p99']: .5f} s")
            print(f"output_token_throughput_mean: {info['output_token_throughput_mean']:.2f} tokens/s")           # 单路生成吞吐
            print(f"output_token_throughput_median: {info['output_token_throughput_median']:.2f} tokens/s")
            print(f"output_token_throughput_p99: {info['output_token_throughput_p99']:.2f} tokens/s")
            print(f"inout_token_throughput_mean: {info['inout_token_throughput_mean']:.2f} tokens/s")           # 单路总吞吐
            print(f"tinout_token_throughput_median: {info['inout_token_throughput_median']:.2f} tokens/s")
            print(f"inout_token_throughput_p99: {info['inout_token_throughput_p99']:.2f} tokens/s")
            print("==============================================")
            print("\n")
            
    return info_json


async def run_vllm_async(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: str,
    quantization: Optional[str],
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
    trust_remote_code: bool,
    dtype: str,
    max_model_len: Optional[int],
    enforce_eager: bool,
    kv_cache_dtype: str,
    quantization_param_path: Optional[str],
    device: str,
    enable_prefix_caching: bool,
    enable_chunked_prefill: bool,
    max_num_batched_tokens: int,
    distributed_executor_backend: Optional[str],
    gpu_memory_utilization: float = 0.9,
    num_scheduler_steps: int = 1,
    use_v2_block_manager: bool = False,
    download_dir: Optional[str] = None,
    load_format: str = EngineArgs.load_format,
    disable_async_output_proc: bool = False,
    disable_frontend_multiprocessing: bool = False,
) -> float:
    from vllm import SamplingParams
    engine_args = AsyncEngineArgs(
        model=model,
        tokenizer=tokenizer,
        quantization=quantization,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
        trust_remote_code=trust_remote_code,
        dtype=dtype,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        enforce_eager=enforce_eager,
        kv_cache_dtype=kv_cache_dtype,
        quantization_param_path=quantization_param_path,
        device=device,
        enable_prefix_caching=enable_prefix_caching,
        download_dir=download_dir,
        enable_chunked_prefill=enable_chunked_prefill,
        max_num_batched_tokens=max_num_batched_tokens,
        distributed_executor_backend=distributed_executor_backend,
        load_format=load_format,
        num_scheduler_steps=num_scheduler_steps,
        use_v2_block_manager=use_v2_block_manager,
        disable_async_output_proc=disable_async_output_proc,
        worker_use_ray=False,
        disable_log_requests=True,
    )

    async with build_async_engine_client_from_engine_args(
            engine_args, disable_frontend_multiprocessing) as llm:

        # Add the requests to the engine.
        prompts: List[str] = []
        sampling_params: List[SamplingParams] = []
        for prompt, _, output_len in requests:
            prompts.append(prompt)
            sampling_params.append(
                SamplingParams(
                    n=n,
                    temperature=0.0 if use_beam_search else 1.0,
                    top_p=1.0,
                    use_beam_search=use_beam_search,
                    ignore_eos=True,
                    max_tokens=output_len,
                ))

        generators = []
        start = time.perf_counter()
        for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
            generator = llm.generate(prompt, sp, request_id=f"test{i}")
            generators.append(generator)
        all_gens = merge_async_iterators(*generators)
        async for i, res in all_gens:
            pass
        end = time.perf_counter()
        return end - start


def run_hf(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    use_beam_search: bool,
    max_batch_size: int,
    trust_remote_code: bool,
) -> float:
    assert not use_beam_search
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
    if llm.config.model_type == "llama":
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.perf_counter()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) +
                    max(max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt",
                              padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=not use_beam_search,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.perf_counter()
    return end - start


def run_mii(
    requests: List[Tuple[str, int, int]],
    model: str,
    tensor_parallel_size: int,
    output_len: int,
) -> float:
    from mii import client, serve
    llm = serve(model, tensor_parallel=tensor_parallel_size)
    prompts = [prompt for prompt, _, _ in requests]

    start = time.perf_counter()
    llm.generate(prompts, max_new_tokens=output_len)
    end = time.perf_counter()
    client = client(model)
    client.terminate_server()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer, trust_remote_code=args.trust_remote_code)
    warmup_prompt = "hi" * 10
    warmup_requests = [(warmup_prompt, 10, 10)
                for _ in range(1)]
    if args.dataset is None:
        requests_json={}
        for ELEprompt in args.num_prompts:
            for ELEinput,ELEoutput  in zip(args.input_len,args.output_len):
                # Synthesize a prompt with the given input length.
                prompt = "hi" * (ELEinput - 1)
                requests = [(prompt, ELEinput, ELEoutput)
                            for _ in range(ELEprompt)]
                print("type(requests):",type(requests))
                requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]=requests

    else:
        requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
                                   args.output_len)

    if args.backend == "vllm":
        if args.async_engine:
            run_args = [
                requests, args.model, args.tokenizer, args.quantization,
                args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
                args.trust_remote_code, args.dtype, args.max_model_len,
                args.enforce_eager, args.kv_cache_dtype,
                args.quantization_param_path, args.device,
                args.enable_prefix_caching, args.enable_chunked_prefill,
                args.max_num_batched_tokens, args.distributed_executor_backend,
                args.gpu_memory_utilization, args.num_scheduler_steps,
                args.use_v2_block_manager, args.download_dir, args.load_format,
                args.disable_async_output_proc
            ]
        else:
            run_args = [
                warmup_requests, requests_json, args.model, args.tokenizer, args.quantization,
                args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
                args.trust_remote_code, args.dtype, args.max_model_len,
                args.enforce_eager, args.kv_cache_dtype,
                args.quantization_param_path, args.device,
                args.enable_prefix_caching, args.enable_chunked_prefill,
                args.max_num_batched_tokens, args.distributed_executor_backend,
                args.gpu_memory_utilization, args.num_scheduler_steps,
                args.use_v2_block_manager, args.download_dir, args.load_format,
                args.disable_async_output_proc
            ]

        if args.async_engine:
            run_args.append(args.disable_frontend_multiprocessing)
            elapsed_time = uvloop.run(run_vllm_async(*run_args))
        else:
            info_json = run_vllm(*run_args, args.use_new_beam_search_impl)
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.use_beam_search, args.hf_max_batch_size,
                              args.trust_remote_code)
    elif args.backend == "mii":
        elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
                               args.output_len)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")
    # total_num_tokens = sum(prompt_len + output_len
    #                        for _, prompt_len, output_len in requests)
    
    # if args.dataset is None:
    #     total_out_tokens = args.output_len * args.num_prompts
    # else:
    #     total_out_tokens = sum(output_len for _, _, output_len in requests) 
    # print(f"Latency: {elapsed_time:.2f} s")
    # print(f"All Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
    #       f"{total_num_tokens / elapsed_time:.2f} tokens/s")
    # print(f"Generate Throughput: {total_out_tokens / elapsed_time:.2f} tokens/s")

    with open(args.output_json,"w") as f:
        title="bs_in_out"
        data_keys=info_json[list(info_json.keys())[0]].keys()
        keys_string = ','.join(data_keys)
        title=title+","+keys_string
        f.write(title)
        f.write("\n")
        for key, value in info_json.items():
            values_as_strings = [str(value) for value in info_json[key].values()]
            values_string = ','.join(values_as_strings)
            key=key+","+values_string
            f.writelines(key)
            f.write("\n")

    # Output JSON results if specified
    # if args.output_json:
    #     results = {
    #         "elapsed_time": elapsed_time,
    #         "num_requests": len(requests),
    #         "total_num_tokens": total_num_tokens,
    #         "requests_per_second": len(requests) / elapsed_time,
    #         "tokens_per_second": total_num_tokens / elapsed_time,
    #     }
    #     with open(args.output_json, "w") as f:
    #         json.dump(results, f, indent=4)


if __name__ == "__main__":
    parser = FlexibleArgumentParser(description="Benchmark the throughput.")
    parser.add_argument("--backend",
                        type=str,
                        choices=["vllm", "hf", "mii"],
                        default="vllm")
    parser.add_argument("--dataset",
                        type=str,
                        default=None,
                        help="Path to the dataset.")
    parser.add_argument("--input-len",
                        type=int,
                        nargs="*",
                        default=None,
                        help="Input prompt length for each request")
    parser.add_argument("--output-len",
                        type=int,
                        nargs="*",
                        default=None,
                        help="Output length for each request. Overrides the "
                        "output length from the dataset.")
    parser.add_argument("--model", type=str, default="facebook/opt-125m")
    parser.add_argument("--tokenizer", type=str, default=None)
    parser.add_argument('--quantization',
                        '-q',
                        choices=[*QUANTIZATION_METHODS, None],
                        default=None)
    parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
    parser.add_argument("--n",
                        type=int,
                        default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument('--num-iters-warmup',
                        type=int,
                        default=1,
                        help='Number of iterations to run for warmup.')
    parser.add_argument("--use-new-beam-search-impl", action="store_true")
    parser.add_argument("--num-prompts",
                        nargs="*",
                        type=int,
                        default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--hf-max-batch-size",
                        type=int,
                        default=None,
                        help="Maximum batch size for HF backend.")
    parser.add_argument('--trust-remote-code',
                        action='store_true',
                        help='trust remote code from huggingface')
    parser.add_argument(
        '--max-model-len',
        type=int,
        default=None,
        help='Maximum length of a sequence (including prompt and output). '
        'If None, will be derived from the model.')
    parser.add_argument(
        '--dtype',
        type=str,
        default='auto',
        choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
        help='data type for model weights and activations. '
        'The "auto" option will use FP16 precision '
        'for FP32 and FP16 models, and BF16 precision '
        'for BF16 models.')
    parser.add_argument('--gpu-memory-utilization',
                        type=float,
                        default=0.9,
                        help='the fraction of GPU memory to be used for '
                        'the model executor, which can range from 0 to 1.'
                        'If unspecified, will use the default value of 0.9.')
    parser.add_argument("--enforce-eager",
                        action="store_true",
                        help="enforce eager execution")
    parser.add_argument(
        '--kv-cache-dtype',
        type=str,
        choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
        default="auto",
        help='Data type for kv cache storage. If "auto", will use model '
        'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
        'ROCm (hcu) supports fp8 (=fp8_e4m3)')
    parser.add_argument(
        '--quantization-param-path',
        type=str,
        default=None,
        help='Path to the JSON file containing the KV cache scaling factors. '
        'This should generally be supplied, when KV cache dtype is FP8. '
        'Otherwise, KV cache scaling factors default to 1.0, which may cause '
        'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
        'cuda version greater than 11.8. On ROCm (hcu), FP8_E4M3 is '
        'instead supported for common inference criteria.')
    parser.add_argument("--device",
                        type=str,
                        default="auto",
                        choices=DEVICE_OPTIONS,
                        help='device type for vLLM execution')
    parser.add_argument(
        "--num-scheduler-steps",
        type=int,
        default=1,
        help="Maximum number of forward steps per scheduler call.")
    parser.add_argument("--use-v2-block-manager",
                        action='store_true',
                        help="Enable block manager v2.")
    parser.add_argument(
        "--enable-prefix-caching",
        action='store_true',
        help="Enable automatic prefix caching for vLLM backend.")
    parser.add_argument("--enable-chunked-prefill",
                        action='store_true',
                        help="enable chunked prefill for vLLM backend.")
    parser.add_argument('--max-num-batched-tokens',
                        type=int,
                        default=None,
                        help='maximum number of batched tokens per '
                        'iteration')
    parser.add_argument('--download-dir',
                        type=str,
                        default=None,
                        help='directory to download and load the weights, '
                        'default to the default cache dir of huggingface')
    parser.add_argument(
        '--output-json',
        type=str,
        default=None,
        help='Path to save the throughput results in JSON format.')
    parser.add_argument(
        '--distributed-executor-backend',
        choices=['ray', 'mp'],
        default=None,
        help='Backend to use for distributed serving. When more than 1 GPU '
        'is used, will be automatically set to "ray" if installed '
        'or "mp" (multiprocessing) otherwise.')
    parser.add_argument(
        '--load-format',
        type=str,
        default=EngineArgs.load_format,
        choices=[
            'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
            'bitsandbytes'
        ],
        help='The format of the model weights to load.\n\n'
        '* "auto" will try to load the weights in the safetensors format '
        'and fall back to the pytorch bin format if safetensors format '
        'is not available.\n'
        '* "pt" will load the weights in the pytorch bin format.\n'
        '* "safetensors" will load the weights in the safetensors format.\n'
        '* "npcache" will load the weights in pytorch format and store '
        'a numpy cache to speed up the loading.\n'
        '* "dummy" will initialize the weights with random values, '
        'which is mainly for profiling.\n'
        '* "tensorizer" will load the weights using tensorizer from '
        'CoreWeave. See the Tensorize vLLM Model script in the Examples'
        'section for more information.\n'
        '* "bitsandbytes" will load the weights using bitsandbytes '
        'quantization.\n')
    parser.add_argument(
        "--disable-async-output-proc",
        action='store_true',
        default=False,
        help="Disable async output processor for vLLM backend.")
    parser.add_argument("--async-engine",
                        action='store_true',
                        default=False,
                        help="Use vLLM async engine rather than LLM class.")
    parser.add_argument("--disable-frontend-multiprocessing",
                        action='store_true',
                        default=False,
                        help="Disable decoupled async engine frontend.")
    args = parser.parse_args()
    if args.tokenizer is None:
        args.tokenizer = args.model
    if args.dataset is None:
        assert args.input_len is not None
        assert args.output_len is not None
    else:
        assert args.input_len is None

    if args.backend == "vllm":
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
    elif args.backend == "mii":
        if args.dtype != "auto":
            raise ValueError("dtype must be auto for MII backend.")
        if args.n != 1:
            raise ValueError("n must be 1 for MII backend.")
        if args.use_beam_search:
            raise ValueError("Beam search is not supported for MII backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
        if args.tokenizer != args.model:
            raise ValueError("Tokenizer must be the same as the model for MII "
                             "backend.")
    main(args)