benchmark_throughput.py 25.3 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""

import argparse
import dataclasses
import json
import os
import random
import time
import warnings
from typing import Any, Optional, Union

import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase

from benchmark_dataset import (
    AIMODataset,
    BurstGPTDataset,
    ConversationDataset,
    InstructCoderDataset,
    RandomDataset,
    SampleRequest,
    ShareGPTDataset,
    SonnetDataset,
    VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
    build_async_engine_client_from_engine_args,
)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators


def run_vllm(
    requests: list[SampleRequest],
    n: int,
    engine_args: EngineArgs,
    disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
    from vllm import LLM, SamplingParams

    llm = LLM(**dataclasses.asdict(engine_args))
    assert all(
        llm.llm_engine.model_config.max_model_len
        >= (request.prompt_len + request.expected_output_len)
        for request in requests
    ), (
        "Please ensure that max_model_len is greater than the sum of"
        " prompt_len and expected_output_len for all requests."
    )
    # Add the requests to the engine.
    prompts: list[Union[TextPrompt, TokensPrompt]] = []
    sampling_params: list[SamplingParams] = []
    for request in requests:
        prompts.append(
            TokensPrompt(
                prompt_token_ids=request.prompt["prompt_token_ids"],
                multi_modal_data=request.multi_modal_data,
            )
            if "prompt_token_ids" in request.prompt
            else TextPrompt(
                prompt=request.prompt, multi_modal_data=request.multi_modal_data
            )
        )
        sampling_params.append(
            SamplingParams(
                n=n,
                temperature=1.0,
                top_p=1.0,
                ignore_eos=True,
                max_tokens=request.expected_output_len,
                detokenize=not disable_detokenize,
            )
        )
    lora_requests: Optional[list[LoRARequest]] = None
    if engine_args.enable_lora:
        lora_requests = [request.lora_request for request in requests]

    use_beam_search = False

    outputs = None
    if not use_beam_search:
        start = time.perf_counter()
        outputs = llm.generate(
            prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
        )
        end = time.perf_counter()
    else:
        assert lora_requests is None, "BeamSearch API does not support LoRA"
        prompts = [request.prompt for request in requests]
        # output_len should be the same for all requests.
        output_len = requests[0].expected_output_len
        for request in requests:
            assert request.expected_output_len == output_len
        start = time.perf_counter()
        llm.beam_search(
            prompts,
            BeamSearchParams(
                beam_width=n,
                max_tokens=output_len,
                ignore_eos=True,
            ),
        )
        end = time.perf_counter()
    return end - start, outputs


def run_vllm_chat(
    requests: list[SampleRequest],
    n: int,
    engine_args: EngineArgs,
    disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
    """
    Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
    multimodal models as it properly handles multimodal inputs and chat
    formatting. For non-multimodal models, use run_vllm() instead.
    """
    from vllm import LLM, SamplingParams

    llm = LLM(**dataclasses.asdict(engine_args))

    assert all(
        llm.llm_engine.model_config.max_model_len
        >= (request.prompt_len + request.expected_output_len)
        for request in requests
    ), (
        "Please ensure that max_model_len is greater than the sum of "
        "prompt_len and expected_output_len for all requests."
    )

    prompts = []
    sampling_params: list[SamplingParams] = []
    for request in requests:
        prompts.append(request.prompt)
        sampling_params.append(
            SamplingParams(
                n=n,
                temperature=1.0,
                top_p=1.0,
                ignore_eos=True,
                max_tokens=request.expected_output_len,
                detokenize=not disable_detokenize,
            )
        )
    start = time.perf_counter()
    outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
    end = time.perf_counter()
    return end - start, outputs


async def run_vllm_async(
    requests: list[SampleRequest],
    n: int,
    engine_args: AsyncEngineArgs,
    disable_frontend_multiprocessing: bool = False,
    disable_detokenize: bool = False,
) -> float:
    from vllm import SamplingParams

    async with build_async_engine_client_from_engine_args(
        engine_args, disable_frontend_multiprocessing
    ) as llm:
        model_config = await llm.get_model_config()
        assert all(
            model_config.max_model_len
            >= (request.prompt_len + request.expected_output_len)
            for request in requests
        ), (
            "Please ensure that max_model_len is greater than the sum of"
            " prompt_len and expected_output_len for all requests."
        )

        # Add the requests to the engine.
        prompts: list[Union[TextPrompt, TokensPrompt]] = []
        sampling_params: list[SamplingParams] = []
        lora_requests: list[Optional[LoRARequest]] = []
        for request in requests:
            prompts.append(
                TokensPrompt(
                    prompt_token_ids=request.prompt["prompt_token_ids"],
                    multi_modal_data=request.multi_modal_data,
                )
                if "prompt_token_ids" in request.prompt
                else TextPrompt(
                    prompt=request.prompt, multi_modal_data=request.multi_modal_data
                )
            )
            sampling_params.append(
                SamplingParams(
                    n=n,
                    temperature=1.0,
                    top_p=1.0,
                    ignore_eos=True,
                    max_tokens=request.expected_output_len,
                    detokenize=not disable_detokenize,
                )
            )
            lora_requests.append(request.lora_request)

        generators = []
        start = time.perf_counter()
        for i, (prompt, sp, lr) in enumerate(
            zip(prompts, sampling_params, lora_requests)
        ):
            generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
            generators.append(generator)
        all_gens = merge_async_iterators(*generators)
        async for i, res in all_gens:
            pass
        end = time.perf_counter()
        return end - start


def run_hf(
    requests: list[SampleRequest],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    max_batch_size: int,
    trust_remote_code: bool,
    disable_detokenize: bool = False,
) -> float:
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
    )
    if llm.config.model_type == "llama":
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.perf_counter()
    batch: list[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt = requests[i].prompt
        prompt_len = requests[i].prompt_len
        output_len = requests[i].expected_output_len
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            next_prompt_len = requests[i + 1].prompt_len
            next_output_len = requests[i + 1].expected_output_len
            if (
                max(max_prompt_len, next_prompt_len)
                + max(max_output_len, next_output_len)
            ) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=True,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        if not disable_detokenize:
            # Include the decoding time.
            tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.perf_counter()
    return end - start


def run_mii(
    requests: list[SampleRequest],
    model: str,
    tensor_parallel_size: int,
    output_len: int,
) -> float:
    from mii import client, serve

    llm = serve(model, tensor_parallel=tensor_parallel_size)
    prompts = [request.prompt for request in requests]

    start = time.perf_counter()
    llm.generate(prompts, max_new_tokens=output_len)
    end = time.perf_counter()
    client = client(model)
    client.terminate_server()
    return end - start


def save_to_pytorch_benchmark_format(
    args: argparse.Namespace, results: dict[str, Any]
) -> None:
    pt_records = convert_to_pytorch_benchmark_format(
        args=args,
        metrics={
            "requests_per_second": [results["requests_per_second"]],
            "tokens_per_second": [results["tokens_per_second"]],
        },
        extra_info={
            k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
        },
    )
    if pt_records:
        # Don't use json suffix here as we don't want CI to pick it up
        pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
        write_to_json(pt_file, pt_records)


def get_requests(args, tokenizer):
    # Common parameters for all dataset types.
    common_kwargs = {
        "dataset_path": args.dataset_path,
        "random_seed": args.seed,
    }
    sample_kwargs = {
        "tokenizer": tokenizer,
        "lora_path": args.lora_path,
        "max_loras": args.max_loras,
        "num_requests": args.num_prompts,
        "input_len": args.input_len,
        "output_len": args.output_len,
    }

    if args.dataset_path is None or args.dataset_name == "random":
        sample_kwargs["range_ratio"] = args.random_range_ratio
        sample_kwargs["prefix_len"] = args.prefix_len
        dataset_cls = RandomDataset
    elif args.dataset_name == "sharegpt":
        dataset_cls = ShareGPTDataset
        if args.backend == "vllm-chat":
            sample_kwargs["enable_multimodal_chat"] = True
    elif args.dataset_name == "sonnet":
        assert tokenizer.chat_template or tokenizer.default_chat_template, (
            "Tokenizer/model must have chat template for sonnet dataset."
        )
        dataset_cls = SonnetDataset
        sample_kwargs["prefix_len"] = args.prefix_len
        sample_kwargs["return_prompt_formatted"] = True
    elif args.dataset_name == "burstgpt":
        dataset_cls = BurstGPTDataset
    elif args.dataset_name == "hf":
        if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
            dataset_cls = VisionArenaDataset
            common_kwargs["dataset_subset"] = None
            common_kwargs["dataset_split"] = "train"
            sample_kwargs["enable_multimodal_chat"] = True
        elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
            dataset_cls = InstructCoderDataset
            common_kwargs["dataset_split"] = "train"
        elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
            dataset_cls = ConversationDataset
            common_kwargs["dataset_subset"] = args.hf_subset
            common_kwargs["dataset_split"] = args.hf_split
            sample_kwargs["enable_multimodal_chat"] = True
        elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
            dataset_cls = AIMODataset
            common_kwargs["dataset_subset"] = None
            common_kwargs["dataset_split"] = "train"
    else:
        raise ValueError(f"Unknown dataset name: {args.dataset_name}")
    # Remove None values
    sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
    return dataset_cls(**common_kwargs).sample(**sample_kwargs)


def main(args: argparse.Namespace):
    if args.seed is None:
        args.seed = 0
    print(args)
    random.seed(args.seed)
    # Sample the requests.
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer, trust_remote_code=args.trust_remote_code
    )
    requests = get_requests(args, tokenizer)
    is_multi_modal = any(request.multi_modal_data is not None for request in requests)
    request_outputs: Optional[list[RequestOutput]] = None
    if args.backend == "vllm":
        if args.async_engine:
            elapsed_time = uvloop.run(
                run_vllm_async(
                    requests,
                    args.n,
                    AsyncEngineArgs.from_cli_args(args),
                    args.disable_frontend_multiprocessing,
                    args.disable_detokenize,
                )
            )
        else:
            elapsed_time, request_outputs = run_vllm(
                requests,
                args.n,
                EngineArgs.from_cli_args(args),
                args.disable_detokenize,
            )
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(
            requests,
            args.model,
            tokenizer,
            args.n,
            args.hf_max_batch_size,
            args.trust_remote_code,
            args.disable_detokenize,
        )
    elif args.backend == "mii":
        elapsed_time = run_mii(
            requests, args.model, args.tensor_parallel_size, args.output_len
        )
    elif args.backend == "vllm-chat":
        elapsed_time, request_outputs = run_vllm_chat(
            requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
        )
    else:
        raise ValueError(f"Unknown backend: {args.backend}")

    if request_outputs:
        # Note: with the vllm and vllm-chat backends,
        # we have request_outputs, which we use to count tokens.
        total_prompt_tokens = 0
        total_output_tokens = 0
        for ro in request_outputs:
            if not isinstance(ro, RequestOutput):
                continue
            total_prompt_tokens += (
                len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
            )
            total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
        total_num_tokens = total_prompt_tokens + total_output_tokens
    else:
        total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
        total_output_tokens = sum(r.expected_output_len for r in requests)
        total_prompt_tokens = total_num_tokens - total_output_tokens

    if is_multi_modal and args.backend != "vllm-chat":
        print(
            "\033[91mWARNING\033[0m: Multi-modal request with "
            f"{args.backend} backend detected. The "
            "following metrics are not accurate because image tokens are not"
            " counted. See vllm-project/vllm/issues/9778 for details."
        )
        # TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
        # vllm-chat backend counts the image tokens now

    print(
        f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
        f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
        f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
    )
    print(f"Total num prompt tokens:  {total_prompt_tokens}")
    print(f"Total num output tokens:  {total_output_tokens}")

    # Output JSON results if specified
    if args.output_json:
        results = {
            "elapsed_time": elapsed_time,
            "num_requests": len(requests),
            "total_num_tokens": total_num_tokens,
            "requests_per_second": len(requests) / elapsed_time,
            "tokens_per_second": total_num_tokens / elapsed_time,
        }
        with open(args.output_json, "w") as f:
            json.dump(results, f, indent=4)
        save_to_pytorch_benchmark_format(args, results)


def validate_args(args):
    """
    Validate command-line arguments.
    """

    # === Deprecation and Defaulting ===
    if args.dataset is not None:
        warnings.warn(
            "The '--dataset' argument will be deprecated in the next release. "
            "Please use '--dataset-name' and '--dataset-path' instead.",
            stacklevel=2,
        )
        args.dataset_path = args.dataset

    if not getattr(args, "tokenizer", None):
        args.tokenizer = args.model

    # === Backend Validation ===
    valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
    if args.backend not in valid_backends:
        raise ValueError(f"Unsupported backend: {args.backend}")

    # === Dataset Configuration ===
    if not args.dataset and not args.dataset_path:
        print("When dataset path is not set, it will default to random dataset")
        args.dataset_name = "random"
        if args.input_len is None:
            raise ValueError("input_len must be provided for a random dataset")

    # === Dataset Name Specific Checks ===
    # --hf-subset and --hf-split: only used
    # when dataset_name is 'hf'
    if args.dataset_name != "hf" and (
        getattr(args, "hf_subset", None) is not None
        or getattr(args, "hf_split", None) is not None
    ):
        warnings.warn(
            "--hf-subset and --hf-split will be ignored \
                since --dataset-name is not 'hf'.",
            stacklevel=2,
        )
    elif args.dataset_name == "hf":
        if args.dataset_path in (
            VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
            | ConversationDataset.SUPPORTED_DATASET_PATHS
        ):
            assert args.backend == "vllm-chat", (
                f"{args.dataset_path} needs to use vllm-chat as the backend."
            )  # noqa: E501
        elif args.dataset_path in (
            InstructCoderDataset.SUPPORTED_DATASET_PATHS
            | AIMODataset.SUPPORTED_DATASET_PATHS
        ):
            assert args.backend == "vllm", (
                f"{args.dataset_path} needs to use vllm as the backend."
            )  # noqa: E501
        else:
            raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")

    # --random-range-ratio: only used when dataset_name is 'random'
    if args.dataset_name != "random" and args.random_range_ratio is not None:
        warnings.warn(
            "--random-range-ratio will be ignored since \
                --dataset-name is not 'random'.",
            stacklevel=2,
        )

    # --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
    # set.
    if (
        args.dataset_name not in {"random", "sonnet", None}
        and args.prefix_len is not None
    ):
        warnings.warn(
            "--prefix-len will be ignored since --dataset-name\
                 is not 'random', 'sonnet', or not set.",
            stacklevel=2,
        )

    # === LoRA Settings ===
    if getattr(args, "enable_lora", False) and args.backend != "vllm":
        raise ValueError("LoRA benchmarking is only supported for vLLM backend")
    if getattr(args, "enable_lora", False) and args.lora_path is None:
        raise ValueError("LoRA path must be provided when enable_lora is True")

    # === Backend-specific Validations ===
    if args.backend == "hf" and args.hf_max_batch_size is None:
        raise ValueError("HF max batch size is required for HF backend")
    if args.backend != "hf" and args.hf_max_batch_size is not None:
        raise ValueError("HF max batch size is only for HF backend.")

    if (
        args.backend in {"hf", "mii"}
        and getattr(args, "quantization", None) is not None
    ):
        raise ValueError("Quantization is only for vLLM backend.")

    if args.backend == "mii" and args.dtype != "auto":
        raise ValueError("dtype must be auto for MII backend.")
    if args.backend == "mii" and args.n != 1:
        raise ValueError("n must be 1 for MII backend.")
    if args.backend == "mii" and args.tokenizer != args.model:
        raise ValueError("Tokenizer must be the same as the model for MII backend.")

    # --data-parallel is not supported currently.
    # https://github.com/vllm-project/vllm/issues/16222
    if args.data_parallel_size > 1:
        raise ValueError(
            "Data parallel is not supported in offline benchmark, \
            please use benchmark serving instead"
        )


def create_argument_parser():
    parser = FlexibleArgumentParser(description="Benchmark the throughput.")
    parser.add_argument(
        "--backend",
        type=str,
        choices=["vllm", "hf", "mii", "vllm-chat"],
        default="vllm",
    )
    parser.add_argument(
        "--dataset-name",
        type=str,
        choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
        help="Name of the dataset to benchmark on.",
        default="sharegpt",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default=None,
        help="Path to the ShareGPT dataset, will be deprecated in\
            the next release. The dataset is expected to "
        "be a json in form of list[dict[..., conversations: "
        "list[dict[..., value: <prompt_or_response>]]]]",
    )
    parser.add_argument(
        "--dataset-path", type=str, default=None, help="Path to the dataset"
    )
    parser.add_argument(
        "--input-len",
        type=int,
        default=None,
        help="Input prompt length for each request",
    )
    parser.add_argument(
        "--output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the "
        "output length from the dataset.",
    )
    parser.add_argument(
        "--n", type=int, default=1, help="Number of generated sequences per prompt."
    )
    parser.add_argument(
        "--num-prompts", type=int, default=1000, help="Number of prompts to process."
    )
    parser.add_argument(
        "--hf-max-batch-size",
        type=int,
        default=None,
        help="Maximum batch size for HF backend.",
    )
    parser.add_argument(
        "--output-json",
        type=str,
        default=None,
        help="Path to save the throughput results in JSON format.",
    )
    parser.add_argument(
        "--async-engine",
        action="store_true",
        default=False,
        help="Use vLLM async engine rather than LLM class.",
    )
    parser.add_argument(
        "--disable-frontend-multiprocessing",
        action="store_true",
        default=False,
        help="Disable decoupled async engine frontend.",
    )
    parser.add_argument(
        "--disable-detokenize",
        action="store_true",
        help=(
            "Do not detokenize the response (i.e. do not include "
            "detokenization time in the measurement)"
        ),
    )
    # LoRA
    parser.add_argument(
        "--lora-path",
        type=str,
        default=None,
        help="Path to the LoRA adapters to use. This can be an absolute path, "
        "a relative path, or a Hugging Face model identifier.",
    )
    parser.add_argument(
        "--prefix-len",
        type=int,
        default=None,
        help=f"Number of prefix tokens to be used in RandomDataset "
        "and SonnetDataset. For RandomDataset, the total input "
        "length is the sum of prefix-len (default: "
        f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
        "sampled from [input_len * (1 - range_ratio), "
        "input_len * (1 + range_ratio)]. For SonnetDataset, "
        f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
        "controls how much of the input is fixed lines versus "
        "random lines, but the total input length remains approximately "
        "input_len tokens.",
    )
    # random dataset
    parser.add_argument(
        "--random-range-ratio",
        type=float,
        default=None,
        help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
        "for sampling input/output length, "
        "used only for RandomDataset. Must be in the range [0, 1) to "
        "define a symmetric sampling range "
        "[length * (1 - range_ratio), length * (1 + range_ratio)].",
    )

    # hf dtaset
    parser.add_argument(
        "--hf-subset", type=str, default=None, help="Subset of the HF dataset."
    )
    parser.add_argument(
        "--hf-split", type=str, default=None, help="Split of the HF dataset."
    )

    parser = AsyncEngineArgs.add_cli_args(parser)

    return parser


if __name__ == "__main__":
    parser = create_argument_parser()
    args = parser.parse_args()
    if args.tokenizer is None:
        args.tokenizer = args.model
    validate_args(args)
    main(args)