benchmark_throughput_0.8.4.py 27.2 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import random
import time
from functools import cache
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import uvloop
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          PreTrainedTokenizerBase)


from vllm.inputs import PromptType
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
    build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import FlexibleArgumentParser, merge_async_iterators


@dataclasses.dataclass
class SampleRequest:
    """A class representing a single inference request for benchmarking.

    Attributes:
        prompt: The input text prompt for the model.
        prompt_len: The length of the prompt in tokens.
        expected_output_len: The expected length of the output in tokens.
        multi_modal_data: Optional dictionary containing multi-modal data (e.g.
            images).
        lora_request: Optional LoRARequest specifying the LoRA to use. 
    """
    prompt: str
    prompt_len: int
    expected_output_len: int
    multi_modal_data: Optional[MultiModalDataDict] = None
    lora_request: Optional[LoRARequest] = None


def _get_prompt_for_image_model(question: str, *, model: str) -> str:
    """Prepend and append special tokens around the question to form a prompt.

    Args:
        question: The input question text to wrap with special tokens
        model: The name of the model being used, to determine which special
            tokens to add

    Returns:
        The formatted prompt string with appropriate special tokens for the
            model

    Raises:
        ValueError: If an unsupported model name is provided
    """
    model = model.lower()
    if "pixtral" in model:
        return f"<s>[INST]{question}\n[IMG][/INST]"
    raise ValueError(f"Unsupported model {model}")


@cache
def lora_path_on_disk(lora_path: str) -> str:
    return get_adapter_absolute_path(lora_path)


lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}


def get_random_lora_request(
        args: argparse.Namespace
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
    global lora_tokenizer_cache
    lora_id = random.randint(1, args.max_loras)
    lora_request = LoRARequest(lora_name=str(lora_id),
                               lora_int_id=lora_id,
                               lora_path=lora_path_on_disk(args.lora_path))
    if lora_id not in lora_tokenizer_cache:
        lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
    return lora_request, lora_tokenizer_cache[lora_id]


def sample_requests(tokenizer: PreTrainedTokenizerBase,
                    args: argparse.Namespace) -> List[SampleRequest]:

    dataset_path: str = args.dataset
    num_requests: int = args.num_prompts
    fixed_output_len: Optional[int] = args.output_len
    model: str = args.model
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[SampleRequest] = []
    for data in tqdm(dataset,
                     total=len(filtered_dataset),
                     desc="sampling requests"):
        if len(filtered_dataset) == num_requests:
            break

        # Only keep the first two turns of each conversation.
        prompt = data["conversations"][0]["value"]
        completion = data["conversations"][1]["value"]

        multi_modal_data: Optional[MultiModalDataDict] = None
        if "image" in data:
            multi_modal_data = multi_modal_data or {}
            image_path = data["image"]
            # TODO(vllm-project/vllm/issues/9778): Support multiple images.
            assert isinstance(image_path,
                              str), "Only support single image input"
            try:
                multi_modal_data["image"] = Image.open(image_path).convert(
                    "RGB")
            except FileNotFoundError:
                # Ignore datapoint where asset is missing
                continue
            prompt = _get_prompt_for_image_model(question=prompt, model=model)

        request_tokenizer = tokenizer
        lora_request: Optional[LoRARequest] = None
        if args.enable_lora:
            lora_request, lora_tokenizer = get_random_lora_request(args)
            if lora_tokenizer:
                request_tokenizer = lora_tokenizer

        # Tokenize the prompts and completions.
        prompt_token_ids = request_tokenizer(prompt).input_ids
        completion_token_ids = request_tokenizer(completion).input_ids
        prompt_len = len(prompt_token_ids)
        output_len = len(completion_token_ids
                         ) if fixed_output_len is None else fixed_output_len
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append(
            SampleRequest(prompt=prompt,
                          prompt_len=prompt_len,
                          expected_output_len=output_len,
                          multi_modal_data=multi_modal_data,
                          lora_request=lora_request))

    return filtered_dataset


def run_vllm(
    requests_json: List[SampleRequest],
    n: int,
    num_iters_warmup: int,
    engine_args: EngineArgs,

) -> float:
    from vllm import LLM, SamplingParams
    llm = LLM(**dataclasses.asdict(engine_args))

    # warmup
    warmup_sampling_params = SamplingParams(
        n=args.n,
        temperature=1.0,
        top_p=1.0,
        ignore_eos=True,
        max_tokens=10,
    )
    dummy_prompt_token_ids = np.random.randint(10000, size=(1,10))
    dummy_prompts: List[PromptType] = [{
        "prompt_token_ids": batch
    } for batch in dummy_prompt_token_ids.tolist()]
    
    print("Warming up...")
    for _ in tqdm(range(num_iters_warmup), desc="Warmup iterations"):
        llm.generate(dummy_prompts,
                        sampling_params=warmup_sampling_params,
                        use_tqdm=False)

    info_json={}
    for ELEprompt in args.num_prompts:
        for ELEinput,ELEoutput  in zip(args.input_len,args.output_len):
            info={}
            requests=requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]

            # Add the requests to the engine.
            prompts: List[TextPrompt] = []
            sampling_params: List[SamplingParams] = []
            for request in requests:
                prompts.append(
                    TextPrompt(prompt=request.prompt,
                            multi_modal_data=request.multi_modal_data))
                sampling_params.append(
                    SamplingParams(
                        n=n,
                        temperature=1.0,
                        top_p=1.0,
                        ignore_eos=True,
                        max_tokens=request.expected_output_len,
                    ))
            lora_requests: Optional[List[LoRARequest]] = None
            if engine_args.enable_lora:
                lora_requests = [request.lora_request for request in requests]



            use_beam_search = False

            if not use_beam_search:
                start = time.perf_counter()
                real_output=llm.generate(prompts,
                            sampling_params,
                            lora_request=lora_requests,
                            use_tqdm=True)
                end = time.perf_counter()
            else:
                assert lora_requests is None, "BeamSearch API does not support LoRA"
                prompts = [request.prompt for request in requests]
                # output_len should be the same for all requests.
                output_len = requests[0][2]
                for request in requests:
                    assert request.expected_output_len == output_len

                start = time.perf_counter()
                real_output = llm.beam_search(
                    prompts,
                    BeamSearchParams(
                        beam_width=n,
                        max_tokens=output_len,
                        ignore_eos=True,
                    ))
                end = time.perf_counter()
            total_ttfts = []
            total_tpops = []
            total_output_token_throughput = []
            total_inout_token_throughput = []

            for output in real_output:

                ttft_ = output.metrics.first_token_time - output.metrics.arrival_time
                tpop_ = (output.metrics.finished_time - output.metrics.arrival_time - ttft_) / (ELEoutput-1)
                output_token_throughput = (ELEoutput) / (output.metrics.finished_time - output.metrics.arrival_time)
                inout_token_throughput = (ELEoutput + ELEinput) / (output.metrics.finished_time - output.metrics.arrival_time)
                total_ttfts.append(ttft_)
                total_tpops.append(tpop_)
                total_output_token_throughput.append(output_token_throughput)
                total_inout_token_throughput.append(inout_token_throughput)


            total_num_tokens = sum(request.prompt_len + request.expected_output_len
                for request in requests)
            total_output_tokens = sum(request.expected_output_len
                for request in requests)
            # ttft_mean = np.mean(total_ttfts)
            # ttft_median = np.median(total_ttfts or 0)
            # ttft_p99 = np.percentile(total_ttfts or 0, 99)

            # tpop_mean = np.mean(total_tpops)
            # tpop_median = np.median(total_tpops or 0)
            # tpop_p99 = np.percentile(total_tpops or 0, 99)

            # output_token_throughput_mean = np.mean(total_output_token_throughput)
            # output_token_throughput_median = np.median(total_output_token_throughput or 0)
            # output_token_throughput_p99 = np.percentile(total_output_token_throughput or 0, 99)

            # inout_token_throughput_mean = np.mean(total_inout_token_throughput)
            # inout_token_throughput_median = np.median(total_inout_token_throughput or 0)
            # inout_token_throughput_p99 = np.percentile(total_inout_token_throughput or 0, 99)

            info["elapsed_time"] = np.around(end - start,2)
            info["Throughput"] = np.around(len(requests) / info['elapsed_time'],2)
            info["total_tokens"] = np.around(total_num_tokens / info['elapsed_time'],2)
            info["output_tokens"] = np.around(total_output_tokens / info['elapsed_time'],2)


            info["ttft_mean"] = np.around(np.mean(total_ttfts),5)
            info["ttft_median"] = np.around(np.median(total_ttfts or 0),5)
            info["ttft_p99"] = np.around(np.percentile(total_ttfts or 0, 99),5)

            info["tpop_mean"] = np.around(np.mean(total_tpops),4)
            info["tpop_median"] = np.around(np.median(total_tpops or 0),5)
            info["tpop_p99"] = np.around(np.percentile(total_tpops or 0, 99),5)

            info["output_token_throughput_mean"]  = np.around(np.mean(total_output_token_throughput),2)
            info["output_token_throughput_median"]  = np.around(np.median(total_output_token_throughput or 0),2)
            info["output_token_throughput_p99"]  = np.around(np.percentile(total_output_token_throughput or 0, 99),2)

            info["inout_token_throughput_mean"] = np.around(np.mean(total_inout_token_throughput),2)
            info["inout_token_throughput_median"] = np.around(np.median(total_inout_token_throughput or 0),2)
            info["inout_token_throughput_p99"] = np.around(np.percentile(total_inout_token_throughput or 0, 99),2)

            
            info_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)] = info
            print("promt:{},input:{},output:{}".format(ELEprompt,ELEinput,ELEoutput))
            print(f"Latency: {info['elapsed_time']:.2f} s")
            print(f"Throughput: {len(requests) / info['elapsed_time']:.2f} requests/s, "
                f"{total_num_tokens / info['elapsed_time']:.2f} total tokens/s, "
                f"{total_output_tokens / info['elapsed_time']:.2f} output tokens/s")
            print("==============================================")
            print(f"total_out_tokens: {total_output_tokens: .2f} tokens")
            print(f"elapsed_time: {info['elapsed_time']: .2f} s")     # 总耗时
            print(f"TTFT_mean: {info['ttft_mean']: .5f} s")           # 首字延时
            print(f"ttft_p99: {info['ttft_p99']: .5f} s")
            print(f"ttft_median: {info['ttft_median']: .5f} s")
            print(f"TPOP_mean: {info['tpop_mean']: .5f} s")           # 单字decode时间
            print(f"tpop_median: {info['tpop_median']: .5f} s")
            print(f"tpop_p99: {info['tpop_p99']: .5f} s")
            print(f"output_token_throughput_mean: {info['output_token_throughput_mean']:.2f} tokens/s")           # 单路生成吞吐
            print(f"output_token_throughput_median: {info['output_token_throughput_median']:.2f} tokens/s")
            print(f"output_token_throughput_p99: {info['output_token_throughput_p99']:.2f} tokens/s")
            print(f"inout_token_throughput_mean: {info['inout_token_throughput_mean']:.2f} tokens/s")           # 单路总吞吐
            print(f"tinout_token_throughput_median: {info['inout_token_throughput_median']:.2f} tokens/s")
            print(f"inout_token_throughput_p99: {info['inout_token_throughput_p99']:.2f} tokens/s")
            print("==============================================")
            print("\n")

    return info_json

async def run_vllm_async(
    requests: List[SampleRequest],
    n: int,
    engine_args: AsyncEngineArgs,
    disable_frontend_multiprocessing: bool = False,
) -> float:
    from vllm import SamplingParams

    async with build_async_engine_client_from_engine_args(
            engine_args, disable_frontend_multiprocessing) as llm:

        # Add the requests to the engine.
        prompts: List[TextPrompt] = []
        sampling_params: List[SamplingParams] = []
        lora_requests: List[Optional[LoRARequest]] = []
        for request in requests:
            prompts.append(
                TextPrompt(prompt=request.prompt,
                           multi_modal_data=request.multi_modal_data))
            sampling_params.append(
                SamplingParams(
                    n=n,
                    temperature=1.0,
                    top_p=1.0,
                    ignore_eos=True,
                    max_tokens=request.expected_output_len,
                ))
            lora_requests.append(request.lora_request)

        generators = []
        start = time.perf_counter()
        for i, (prompt, sp,
                lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
            generator = llm.generate(prompt,
                                     sp,
                                     lora_request=lr,
                                     request_id=f"test{i}")
            generators.append(generator)
        all_gens = merge_async_iterators(*generators)
        async for i, res in all_gens:
            pass
        end = time.perf_counter()
        return end - start


def run_hf(
    requests: List[SampleRequest],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    max_batch_size: int,
    trust_remote_code: bool,
) -> float:
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
    if llm.config.model_type == "llama":
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.perf_counter()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) +
                    max(max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt",
                              padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=True,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.perf_counter()
    return end - start


def run_mii(
    requests: List[SampleRequest],
    model: str,
    tensor_parallel_size: int,
    output_len: int,
) -> float:
    from mii import client, serve
    llm = serve(model, tensor_parallel=tensor_parallel_size)
    prompts = [request.prompt for request in requests]

    start = time.perf_counter()
    llm.generate(prompts, max_new_tokens=output_len)
    end = time.perf_counter()
    client = client(model)
    client.terminate_server()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer, trust_remote_code=args.trust_remote_code)
    if args.dataset is None:
        vocab_size = tokenizer.vocab_size
        requests_json={}
        for ELEprompt in args.num_prompts:
            for ELEinput,ELEoutput  in zip(args.input_len,args.output_len):
                requests = []
                for _ in range(ELEprompt):

                    request_tokenizer = tokenizer
                    lora_request: Optional[LoRARequest] = None
                    if args.enable_lora:
                        lora_request, lora_tokenizer = get_random_lora_request(args)
                        if lora_tokenizer:
                            request_tokenizer = lora_tokenizer

                    # Synthesize a prompt with the given input length.
                    candidate_ids = [
                        random.randint(0, vocab_size - 1)
                        for _ in range(ELEinput)
                    ]
                    # As tokenizer may add additional tokens like BOS, we need to try
                    # different lengths to get the desired input length.
                    for _ in range(5):  # Max attempts to correct
                        candidate_prompt = request_tokenizer.decode(candidate_ids)
                        tokenized_len = len(request_tokenizer.encode(candidate_prompt))

                        if tokenized_len == ELEinput:
                            break

                        # Adjust length based on difference
                        diff = ELEinput - tokenized_len
                        if diff > 0:
                            candidate_ids.extend([
                                random.randint(100, vocab_size - 100)
                                for _ in range(diff)
                            ])
                        else:
                            candidate_ids = candidate_ids[:diff]
                    requests.append(
                        SampleRequest(prompt=candidate_prompt,
                                    prompt_len=ELEinput,
                                    expected_output_len=ELEoutput,
                                    lora_request=lora_request))
                requests_json["{}_{}_{}".format(ELEprompt,ELEinput,ELEoutput)]=requests
    else:
        requests = sample_requests(tokenizer, args)

    is_multi_modal = any(request.multi_modal_data is not None
                         for request in requests)
    if args.backend == "vllm":
        if args.async_engine:
            elapsed_time = uvloop.run(
                run_vllm_async(
                    requests,
                    args.n,
                    AsyncEngineArgs.from_cli_args(args),
                    args.disable_frontend_multiprocessing,
                ))
        else:
            info_json = run_vllm(requests_json, args.n, args.num_iters_warmup,
                                    EngineArgs.from_cli_args(args))
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.hf_max_batch_size, args.trust_remote_code)
    elif args.backend == "mii":
        elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
                               args.output_len)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")

    # file_name=args.model.rsplit("/")[-1]+"-tp"+str(args.tensor_parallel_size)+".txt"

    if is_multi_modal:
        print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
                "following metrics are not accurate because image tokens are not"
                " counted. See vllm-project/vllm/issues/9778 for details.")    
    with open(args.output_json,"w") as f:
        title="bs_in_out"
        data_keys=info_json[list(info_json.keys())[0]].keys()
        keys_string = ','.join(data_keys)
        title=title+","+keys_string
        f.write(title)
        f.write("\n")
        for key, value in info_json.items():
            values_as_strings = [str(value) for value in info_json[key].values()]
            values_string = ','.join(values_as_strings)
            key=key+","+values_string
            f.writelines(key)
            f.write("\n")
        # json.dump(info_json, f, indent=4)
    # Output JSON results if specified
    # if args.output_json:
    #     results = {
    #         "elapsed_time": elapsed_time,
    #         "num_requests": len(requests),
    #         "total_num_tokens": total_num_tokens,
    #         "requests_per_second": len(requests) / elapsed_time,
    #         "tokens_per_second": total_num_tokens / elapsed_time,
    #     }
    #     with open(args.output_json, "w") as f:
    #         json.dump(results, f, indent=4)


if __name__ == "__main__":
    parser = FlexibleArgumentParser(description="Benchmark the throughput.")
    parser.add_argument("--backend",
                        type=str,
                        choices=["vllm", "hf", "mii"],
                        default="vllm")
    parser.add_argument("--dataset",
                        type=str,
                        default=None,
                        help="Path to the dataset. The dataset is expected to "
                        "be a json in form of List[Dict[..., conversations: "
                        "List[Dict[..., value: <prompt_or_response>]]]]")
    parser.add_argument("--input-len",
                        type=int,
                        nargs="*",
                        default=None,
                        help="Input prompt length for each request")
    parser.add_argument("--output-len",
                        type=int,
                        nargs="*",
                        default=None,
                        help="Output length for each request. Overrides the "
                        "output length from the dataset.")
    parser.add_argument("--n",
                        type=int,
                        default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument('--num-iters-warmup',
                        type=int,
                        default=1,
                        help='Number of iterations to run for warmup.')
    parser.add_argument("--num-prompts",
                        type=int,
                        nargs="*",
                        default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--hf-max-batch-size",
                        type=int,
                        default=None,
                        help="Maximum batch size for HF backend.")
    parser.add_argument(
        '--output-json',
        type=str,
        default=None,
        help='Path to save the throughput results in JSON format.')
    parser.add_argument("--async-engine",
                        action='store_true',
                        default=False,
                        help="Use vLLM async engine rather than LLM class.")
    parser.add_argument("--disable-frontend-multiprocessing",
                        action='store_true',
                        default=False,
                        help="Disable decoupled async engine frontend.")
    # LoRA
    parser.add_argument(
        "--lora-path",
        type=str,
        default=None,
        help="Path to the lora adapters to use. This can be an absolute path, "
        "a relative path, or a Hugging Face model identifier.")

    parser = AsyncEngineArgs.add_cli_args(parser)
    args = parser.parse_args()
    if args.tokenizer is None:
        args.tokenizer = args.model
    if args.dataset is None:
        assert args.input_len is not None
        assert args.output_len is not None
    else:
        assert args.input_len is None
    if args.enable_lora:
        assert args.lora_path is not None

    if args.backend == "vllm":
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
        if args.enable_lora is not None:
            raise ValueError("LoRA benchmarking is only supported for vLLM"
                             " backend")
    elif args.backend == "mii":
        if args.dtype != "auto":
            raise ValueError("dtype must be auto for MII backend.")
        if args.n != 1:
            raise ValueError("n must be 1 for MII backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
        if args.tokenizer != args.model:
            raise ValueError("Tokenizer must be the same as the model for MII "
                             "backend.")
        if args.enable_lora is not None:
            raise ValueError("LoRA benchmarking is only supported for vLLM"
                             " backend")
    main(args)