tracking.py 15 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A unified tracking interface that supports logging data to different backend
"""

import dataclasses
import os
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Any


class Tracking:
    """A unified tracking interface for logging experiment data to multiple backends.

    This class provides a centralized way to log experiment metrics, parameters, and artifacts
    to various tracking backends including WandB, MLflow, SwanLab, TensorBoard, and console.

    Attributes:
        supported_backend: List of supported tracking backends.
        logger: Dictionary of initialized logger instances for each backend.
    """

    supported_backend = ["wandb", "mlflow", "swanlab", "vemlp_wandb", "tensorboard", "console", "clearml"]

    def __init__(self, project_name, experiment_name, default_backend: str | list[str] = "console", config=None):
        if isinstance(default_backend, str):
            default_backend = [default_backend]
        for backend in default_backend:
            if backend == "tracking":
                import warnings

                warnings.warn("`tracking` logger is deprecated. use `wandb` instead.", DeprecationWarning, stacklevel=2)
            else:
                assert backend in self.supported_backend, f"{backend} is not supported"

        self.logger = {}

        if "tracking" in default_backend or "wandb" in default_backend:
            import wandb

            settings = None
            if config and config["trainer"].get("wandb_proxy", None):
                settings = wandb.Settings(https_proxy=config["trainer"]["wandb_proxy"])
            wandb.init(project=project_name, name=experiment_name, config=config, settings=settings)
            self.logger["wandb"] = wandb

        if "mlflow" in default_backend:
            import os

            import mlflow

            MLFLOW_TRACKING_URI = os.environ.get("MLFLOW_TRACKING_URI", "sqlite:////tmp/mlruns.db")
            mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)

            # Project_name is actually experiment_name in MLFlow
            # If experiment does not exist, will create a new experiment
            experiment = mlflow.set_experiment(project_name)
            mlflow.start_run(experiment_id=experiment.experiment_id, run_name=experiment_name)
            mlflow.log_params(_compute_mlflow_params_from_objects(config))
            self.logger["mlflow"] = _MlflowLoggingAdapter()

        if "swanlab" in default_backend:
            import os

            import swanlab

            SWANLAB_API_KEY = os.environ.get("SWANLAB_API_KEY", None)
            SWANLAB_LOG_DIR = os.environ.get("SWANLAB_LOG_DIR", "swanlog")
            SWANLAB_MODE = os.environ.get("SWANLAB_MODE", "cloud")
            if SWANLAB_API_KEY:
                swanlab.login(SWANLAB_API_KEY)  # NOTE: previous login information will be overwritten

            if config is None:
                config = {}  # make sure config is not None, otherwise **config will raise error
            swanlab.init(
                project=project_name,
                experiment_name=experiment_name,
                config={"FRAMEWORK": "verl", **config},
                logdir=SWANLAB_LOG_DIR,
                mode=SWANLAB_MODE,
            )
            self.logger["swanlab"] = swanlab

        if "vemlp_wandb" in default_backend:
            import os

            import volcengine_ml_platform
            from volcengine_ml_platform import wandb as vemlp_wandb

            volcengine_ml_platform.init(
                ak=os.environ["VOLC_ACCESS_KEY_ID"],
                sk=os.environ["VOLC_SECRET_ACCESS_KEY"],
                region=os.environ["MLP_TRACKING_REGION"],
            )

            vemlp_wandb.init(
                project=project_name,
                name=experiment_name,
                config=config,
                sync_tensorboard=True,
            )
            self.logger["vemlp_wandb"] = vemlp_wandb

        if "tensorboard" in default_backend:
            self.logger["tensorboard"] = _TensorboardAdapter(project_name, experiment_name)

        if "console" in default_backend:
            from verl.utils.logger import LocalLogger

            self.console_logger = LocalLogger(print_to_console=True)
            self.logger["console"] = self.console_logger

        if "clearml" in default_backend:
            self.logger["clearml"] = ClearMLLogger(project_name, experiment_name, config)

    def log(self, data, step, backend=None):
        for default_backend, logger_instance in self.logger.items():
            if backend is None or default_backend in backend:
                logger_instance.log(data=data, step=step)

    def __del__(self):
        if "wandb" in self.logger:
            self.logger["wandb"].finish(exit_code=0)
        if "swanlab" in self.logger:
            self.logger["swanlab"].finish()
        if "vemlp_wandb" in self.logger:
            self.logger["vemlp_wandb"].finish(exit_code=0)
        if "tensorboard" in self.logger:
            self.logger["tensorboard"].finish()

        if "clearnml" in self.logger:
            self.logger["clearnml"].finish()


class ClearMLLogger:
    def __init__(self, project_name: str, experiment_name: str, config):
        self.project_name = project_name
        self.experiment_name = experiment_name

        import clearml

        self._task: clearml.Task = clearml.Task.init(
            task_name=experiment_name,
            project_name=project_name,
            continue_last_task=True,
            output_uri=False,
        )

        self._task.connect_configuration(config, name="Hyperparameters")

    def _get_logger(self):
        return self._task.get_logger()

    def log(self, data, step):
        import numpy as np
        import pandas as pd

        # logs = self._rewrite_logs(data)
        logger = self._get_logger()
        for k, v in data.items():
            title, series = k.split("/", 1)

            if isinstance(v, int | float | np.floating | np.integer):
                logger.report_scalar(
                    title=title,
                    series=series,
                    value=v,
                    iteration=step,
                )
            elif isinstance(v, pd.DataFrame):
                logger.report_table(
                    title=title,
                    series=series,
                    table_plot=v,
                    iteration=step,
                )
            else:
                logger.warning(
                    f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}". This '
                    f"invocation of ClearML logger's function is incorrect so this attribute was dropped. "
                )

    def finish(self):
        self._task.mark_completed()


class _TensorboardAdapter:
    def __init__(self, project_name, experiment_name):
        import os

        from torch.utils.tensorboard import SummaryWriter

        tensorboard_dir = os.environ.get("TENSORBOARD_DIR", f"tensorboard_log/{project_name}/{experiment_name}")
        os.makedirs(tensorboard_dir, exist_ok=True)
        print(f"Saving tensorboard log to {tensorboard_dir}.")
        self.writer = SummaryWriter(tensorboard_dir)

    def log(self, data, step):
        for key in data:
            self.writer.add_scalar(key, data[key], step)

    def finish(self):
        self.writer.close()


class _MlflowLoggingAdapter:
    def log(self, data, step):
        import mlflow

        results = {k.replace("@", "_at_"): v for k, v in data.items()}
        mlflow.log_metrics(metrics=results, step=step)


def _compute_mlflow_params_from_objects(params) -> dict[str, Any]:
    if params is None:
        return {}

    return _flatten_dict(_transform_params_to_json_serializable(params, convert_list_to_dict=True), sep="/")


def _transform_params_to_json_serializable(x, convert_list_to_dict: bool):
    _transform = partial(_transform_params_to_json_serializable, convert_list_to_dict=convert_list_to_dict)

    if dataclasses.is_dataclass(x):
        return _transform(dataclasses.asdict(x))
    if isinstance(x, dict):
        return {k: _transform(v) for k, v in x.items()}
    if isinstance(x, list):
        if convert_list_to_dict:
            return {"list_len": len(x)} | {f"{i}": _transform(v) for i, v in enumerate(x)}
        else:
            return [_transform(v) for v in x]
    if isinstance(x, Path):
        return str(x)
    if isinstance(x, Enum):
        return x.value

    return x


def _flatten_dict(raw: dict[str, Any], *, sep: str) -> dict[str, Any]:
    import pandas as pd

    ans = pd.json_normalize(raw, sep=sep).to_dict(orient="records")[0]
    assert isinstance(ans, dict)
    return ans


@dataclasses.dataclass
class ValidationGenerationsLogger:
    project_name: str = None
    experiment_name: str = None

    def log(self, loggers, samples, step):
        if "wandb" in loggers:
            self.log_generations_to_wandb(samples, step)
        if "swanlab" in loggers:
            self.log_generations_to_swanlab(samples, step)
        if "mlflow" in loggers:
            self.log_generations_to_mlflow(samples, step)

        if "clearml" in loggers:
            self.log_generations_to_clearml(samples, step)
        if "tensorboard" in loggers:
            self.log_generations_to_tensorboard(samples, step)

        if "vemlp_wandb" in loggers:
            self.log_generations_to_vemlp_wandb(samples, step)

    def log_generations_to_vemlp_wandb(self, samples, step):
        from volcengine_ml_platform import wandb as vemlp_wandb

        self._log_generations_to_wandb(samples, step, vemlp_wandb)

    def log_generations_to_wandb(self, samples, step):
        import wandb

        self._log_generations_to_wandb(samples, step, wandb)

    def _log_generations_to_wandb(self, samples, step, wandb):
        """Log samples to wandb as a table"""

        # Create column names for all samples
        columns = ["step"] + sum(
            [[f"input_{i + 1}", f"output_{i + 1}", f"score_{i + 1}"] for i in range(len(samples))], []
        )

        if not hasattr(self, "validation_table"):
            # Initialize the table on first call
            self.validation_table = wandb.Table(columns=columns)

        # Create a new table with same columns and existing data
        # Workaround for https://github.com/wandb/wandb/issues/2981#issuecomment-1997445737
        new_table = wandb.Table(columns=columns, data=self.validation_table.data)

        # Add new row with all data
        row_data = []
        row_data.append(step)
        for sample in samples:
            row_data.extend(sample)

        new_table.add_data(*row_data)

        # Update reference and log
        wandb.log({"val/generations": new_table}, step=step)
        self.validation_table = new_table

    def log_generations_to_swanlab(self, samples, step):
        """Log samples to swanlab as text"""
        import swanlab

        swanlab_table = swanlab.echarts.Table()

        # Create column names
        headers = ["step", "input", "output", "score"]

        swanlab_row_list = [[step, *sample] for sample in samples]
        swanlab_table.add(headers=headers, rows=swanlab_row_list)

        # Log to swanlab
        swanlab.log({"val/generations": swanlab_table}, step=step)

    def log_generations_to_mlflow(self, samples, step):
        """Log validation generation to mlflow as artifacts"""
        # https://mlflow.org/docs/latest/api_reference/python_api/mlflow.html?highlight=log_artifact#mlflow.log_artifact

        import json
        import tempfile

        import mlflow

        try:
            with tempfile.TemporaryDirectory() as tmp_dir:
                validation_gen_step_file = Path(tmp_dir, f"val_step{step}.json")
                row_data = []
                for sample in samples:
                    data = {"input": sample[0], "output": sample[1], "score": sample[2]}
                    row_data.append(data)
                with open(validation_gen_step_file, "w") as file:
                    json.dump(row_data, file)
                mlflow.log_artifact(validation_gen_step_file)
        except Exception as e:
            print(f"WARNING: save validation generation file to mlflow failed with error {e}")

    def log_generations_to_clearml(self, samples, step):
        """Log validation generation to clearml as table"""

        import clearml
        import pandas as pd

        task: clearml.Task | None = clearml.Task.current_task()
        if task is None:
            return

        table = [
            {
                "step": step,
                "input": sample[0],
                "output": sample[1],
                "score": sample[2],
            }
            for sample in samples
        ]

        logger = task.get_logger()
        logger.report_table(
            series="Validation generations",
            title="Validation",
            table_plot=pd.DataFrame.from_records(table),
            iteration=step,
        )

    def log_generations_to_tensorboard(self, samples, step):
        """Log samples to tensorboard as text"""
        # Initialize tensorboard writer if not exists
        if not hasattr(self, "writer"):
            from torch.utils.tensorboard import SummaryWriter

            # Use the same directory structure as _TensorboardAdapter
            if self.project_name and self.experiment_name:
                default_dir = os.path.join("tensorboard_log", self.project_name, self.experiment_name)
            else:
                default_dir = "tensorboard_log"

            tensorboard_dir = os.environ.get("TENSORBOARD_DIR", default_dir)
            os.makedirs(tensorboard_dir, exist_ok=True)
            self.writer = SummaryWriter(log_dir=tensorboard_dir)

        # Format the samples data into readable text
        text_content = f"**Generation Results - Step {step}**\n\n"

        for i, sample in enumerate(samples):
            text_content += f"### Sample {i + 1}\n"

            # Assuming sample contains [input, output, score]
            if len(sample) >= 3:
                input_text, output_text, score = sample[0], sample[1], sample[2]

                text_content += f"**Input:** {input_text}\n\n"
                text_content += f"**Output:** {output_text}\n\n"
                text_content += f"**Score:** {score}\n\n"
            else:
                # Handle cases where sample format might be different
                text_content += f"**Data:** {sample}\n\n"

            text_content += "---\n\n"

        # Log to tensorboard as text
        self.writer.add_text("val/generations", text_content, step)
        # Flush to ensure data is written
        self.writer.flush()