seqlen_balancing.py 14.5 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import heapq
from itertools import chain

import torch
from torch import distributed as dist

from verl.protocol import DataProto
from verl.utils.device import get_device_name


def karmarkar_karp(seqlen_list: list[int], k_partitions: int, equal_size: bool):
    # see: https://en.wikipedia.org/wiki/Largest_differencing_method
    class Set:
        def __init__(self) -> None:
            self.sum = 0
            self.items = []

        def add(self, idx: int, val: int):
            self.items.append((idx, val))
            self.sum += val

        def merge(self, other):
            for idx, val in other.items:
                self.items.append((idx, val))
                self.sum += val

        def __lt__(self, other):
            if self.sum != other.sum:
                return self.sum < other.sum
            if len(self.items) != len(other.items):
                return len(self.items) < len(other.items)
            return self.items < other.items

    class State:
        def __init__(self, items: list[tuple[int, int]], k: int) -> None:
            self.k = k
            # sets should always be decreasing order
            self.sets = [Set() for _ in range(k)]
            assert len(items) in [1, k], f"{len(items)} not in [1, {k}]"
            for i, (idx, seqlen) in enumerate(items):
                self.sets[i].add(idx=idx, val=seqlen)
            self.sets = sorted(self.sets, reverse=True)

        def get_partitions(self):
            partitions = []
            for i in range(len(self.sets)):
                cur_partition = []
                for idx, _ in self.sets[i].items:
                    cur_partition.append(idx)
                partitions.append(cur_partition)
            return partitions

        def merge(self, other):
            for i in range(self.k):
                self.sets[i].merge(other.sets[self.k - 1 - i])
            self.sets = sorted(self.sets, reverse=True)

        @property
        def spread(self) -> int:
            return self.sets[0].sum - self.sets[-1].sum

        def __lt__(self, other):
            # least heap, let the state with largest spread to be popped first,
            # if the spread is the same, let the state who has the largest set
            # to be popped first.
            if self.spread != other.spread:
                return self.spread > other.spread
            return self.sets[0] > other.sets[0]

        def __repr__(self) -> str:
            repr_str = "["
            for i in range(self.k):
                if i > 0:
                    repr_str += ","
                repr_str += "{"
                for j, (_, seqlen) in enumerate(self.sets[i].items):
                    if j > 0:
                        repr_str += ","
                    repr_str += str(seqlen)
                repr_str += "}"
            repr_str += "]"
            return repr_str

    sorted_seqlen_list = sorted([(seqlen, i) for i, seqlen in enumerate(seqlen_list)])
    states_pq = []
    if equal_size:
        assert len(seqlen_list) % k_partitions == 0, f"{len(seqlen_list)} % {k_partitions} != 0"
        for offset in range(0, len(sorted_seqlen_list), k_partitions):
            items = []
            for i in range(k_partitions):
                seqlen, idx = sorted_seqlen_list[offset + i]
                items.append((idx, seqlen))
            heapq.heappush(states_pq, State(items=items, k=k_partitions))
    else:
        for seqlen, idx in sorted_seqlen_list:
            heapq.heappush(states_pq, State(items=[(idx, seqlen)], k=k_partitions))

    while len(states_pq) > 1:
        state0 = heapq.heappop(states_pq)
        state1 = heapq.heappop(states_pq)
        # merge states
        state0.merge(state1)
        heapq.heappush(states_pq, state0)

    final_state = states_pq[0]
    partitions = final_state.get_partitions()
    if equal_size:
        for i, partition in enumerate(partitions):
            assert len(partition) * k_partitions == len(seqlen_list), (
                f"{len(partition)} * {k_partitions} != {len(seqlen_list)}"
            )
    return partitions


def greedy_partition(seqlen_list: list[int], k_partitions: int, equal_size: bool):
    bias = sum(seqlen_list) + 1 if equal_size else 0
    sorted_seqlen = [(seqlen + bias, i) for i, seqlen in enumerate(seqlen_list)]
    partitions = [[] for _ in range(k_partitions)]
    partition_sums = [0 for _ in range(k_partitions)]
    for seqlen, i in sorted_seqlen:
        min_idx = None
        for j in range(k_partitions):
            if min_idx is None or partition_sums[j] < partition_sums[min_idx]:
                min_idx = j
        partitions[min_idx].append(i)
        partition_sums[min_idx] += seqlen
    if equal_size:
        for i, partition in enumerate(partitions):
            assert len(partition) * k_partitions == len(seqlen_list), (
                f"{len(partition)} * {k_partitions} != {len(seqlen_list)}"
            )
    return partitions


def get_seqlen_balanced_partitions(seqlen_list: list[int], k_partitions: int, equal_size: bool):
    """
    Calculates partitions of indices from seqlen_list such that the sum of sequence lengths
    in each partition is balanced. Uses the Karmarkar-Karp differencing method.

    This is useful for balancing workload across devices or batches, especially when
    dealing with variable sequence lengths.

    Args:
        seqlen_list (List[int]): A list of sequence lengths for each item.
        k_partitions (int): The desired number of partitions.
        equal_size (bool): If True, ensures that each partition has the same number of items.
                           Requires len(seqlen_list) to be divisible by k_partitions.
                           If False, partitions can have varying numbers of items, focusing
                           only on balancing the sum of sequence lengths.

    Returns:
        List[List[int]]: A list containing k_partitions lists. Each inner list contains the
                         original indices of the items assigned to that partition. The indices
                         within each partition list are sorted.

    Raises:
        AssertionError: If len(seqlen_list) < k_partitions.
        AssertionError: If equal_size is True and len(seqlen_list) is not divisible by k_partitions.
        AssertionError: If any resulting partition is empty.
    """
    assert len(seqlen_list) >= k_partitions, f"number of items:[{len(seqlen_list)}] < k_partitions:[{k_partitions}]"

    def _check_and_sort_partitions(partitions):
        assert len(partitions) == k_partitions, f"{len(partitions)} != {k_partitions}"
        seen_idx = set()
        sorted_partitions = [None] * k_partitions
        for i, partition in enumerate(partitions):
            assert len(partition) > 0, f"the {i}-th partition is empty"
            for idx in partition:
                seen_idx.add(idx)
            sorted_partitions[i] = sorted(partition)
        assert seen_idx == set(range(len(seqlen_list)))
        return sorted_partitions

    partitions = karmarkar_karp(seqlen_list=seqlen_list, k_partitions=k_partitions, equal_size=equal_size)
    return _check_and_sort_partitions(partitions)


def log_seqlen_unbalance(seqlen_list: list[int], partitions: list[list[int]], prefix):
    """
    Calculate and log metrics related to sequence length imbalance before and after partitioning.

    Args:
        seqlen_list (List[int]): A list of sequence lengths for each item.
        partitions (List[List[int]]): A list of partitions, where each inner list contains indices
                                      from seqlen_list assigned to that partition.
        prefix (str): A prefix to be added to each metric key in the returned dictionary.

    Returns:
        dict: A dictionary containing metrics related to sequence length imbalance.
    """
    # Get the number of partitions
    k_partition = len(partitions)
    # assert len(seqlen_list) % k_partition == 0
    batch_size = len(seqlen_list) // k_partition
    min_sum_seqlen = None
    max_sum_seqlen = None
    total_sum_seqlen = 0

    # Iterate over each batch of sequence lengths
    for offset in range(0, len(seqlen_list), batch_size):
        cur_sum_seqlen = sum(seqlen_list[offset : offset + batch_size])
        if min_sum_seqlen is None or cur_sum_seqlen < min_sum_seqlen:
            min_sum_seqlen = cur_sum_seqlen
        if max_sum_seqlen is None or cur_sum_seqlen > max_sum_seqlen:
            max_sum_seqlen = cur_sum_seqlen
        total_sum_seqlen += cur_sum_seqlen

    balanced_sum_seqlen_list = []
    for partition in partitions:
        cur_sum_seqlen_balanced = sum([seqlen_list[i] for i in partition])
        balanced_sum_seqlen_list.append(cur_sum_seqlen_balanced)
    # print("balanced_sum_seqlen_list: ", balanced_sum_seqlen_list)
    min_sum_seqlen_balanced = min(balanced_sum_seqlen_list)
    max_sum_seqlen_balanced = max(balanced_sum_seqlen_list)

    return {
        f"{prefix}/min": min_sum_seqlen,
        f"{prefix}/max": max_sum_seqlen,
        f"{prefix}/minmax_diff": max_sum_seqlen - min_sum_seqlen,
        f"{prefix}/balanced_min": min_sum_seqlen_balanced,
        f"{prefix}/balanced_max": max_sum_seqlen_balanced,
        f"{prefix}/mean": total_sum_seqlen / len(partitions),
    }


def ceildiv(a, b):
    return -(a // -b)


def roundup_divisible(a, b):
    return ((a + b - 1) // b) * b


def rearrange_micro_batches(
    batch,
    max_token_len,
    dp_group=None,
    num_batches_divided_by=None,
    same_micro_num_in_dp=True,
    min_num_micro_batch=None,
    use_dynamic_bsz_balance=True,
):
    """
    Split a batch into micro-batches by total token count, with optional DP sync and padding.

    Args:
        batch (TensorDict): must include "attention_mask" (B*S); other fields are sliced similarly.
        max_token_len (int): max sum of attention_mask per micro-batch.
        dp_group (optional): torch.distributed group for data-parallel sync.
        num_batches_divided_by (optional): virtual pipeline parallel size, for megatron.
        same_micro_num_in_dp (bool): if True and dp_group set, pad all ranks to the same count.
        min_num_micro_batch (int, optional): force at least this many splits (pads empty ones).
        use_dynamic_bsz_balance (bool, optional): balance the computational workload between micro-batches

    Returns:
        List[TensorDict]: the micro-batches.
        List[List[int]]: index lists mapping each micro-batch back to original positions.
    """
    # this is per local micro_bsz
    max_seq_len = batch["attention_mask"].shape[-1]
    assert max_token_len >= max_seq_len, (
        f"max_token_len must be greater than the sequence length. Got {max_token_len=} and {max_seq_len=}"
    )
    seq_len_effective: torch.Tensor = batch["attention_mask"].sum(dim=1)
    total_seqlen = seq_len_effective.sum().item()
    # NOTE: num_microbatches <= batch_size, so take the min of this two.
    num_micro_batches = min(len(seq_len_effective), ceildiv(total_seqlen, max_token_len))
    if min_num_micro_batch is not None:
        # used to support pp
        num_micro_batches = max(min_num_micro_batch, num_micro_batches)
    if dist.is_initialized() and same_micro_num_in_dp:
        num_micro_batches = torch.tensor([num_micro_batches], device=get_device_name())
        dist.all_reduce(num_micro_batches, op=dist.ReduceOp.MAX, group=dp_group)
        num_micro_batches = num_micro_batches.cpu().item()
    if num_batches_divided_by is not None:
        num_micro_batches = roundup_divisible(num_micro_batches, num_batches_divided_by)

    seq_len_effective = seq_len_effective.tolist()
    assert num_micro_batches <= len(seq_len_effective)

    micro_bsz_idx = get_seqlen_balanced_partitions(seq_len_effective, num_micro_batches, equal_size=False)

    if use_dynamic_bsz_balance:
        # Use the sum of squared sequence lengths to approximate attention computation workload
        micro_bsz_idx.sort(
            key=lambda partition: (
                sum(seq_len_effective[idx] ** 2 for idx in partition),
                min(partition) if partition else 0,
            ),
            reverse=True,
        )

    micro_batches = []

    for partition in micro_bsz_idx:
        curr_micro_batch = []
        for idx in partition:
            curr_micro_batch.append(batch[idx : idx + 1])
        curr_micro_batch = torch.cat(curr_micro_batch)

        micro_batches.append(curr_micro_batch)

    return micro_batches, micro_bsz_idx


def get_reverse_idx(idx_map):
    """
    Build the inverse of an index mapping.

    Args:
        idx_map (Sequence[int]): Sequence where idx_map[i] = j.

    Returns:
        List[int]: Inverse mapping list such that output[j] = i for each i.
    """
    reverse_idx_map = copy.deepcopy(idx_map)

    for i, idx in enumerate(idx_map):
        reverse_idx_map[idx] = i

    return reverse_idx_map


def prepare_dynamic_batch(data: DataProto, max_token_len: int) -> tuple[list[DataProto], list[list[int]]]:
    """
    Prepare a batch for dynamic batching.

    Args:
        data (DataProto): The input data.
        max_token_len (int): The maximum token length for dynamic batching.

    Returns:
        Tuple[List[DataProto], List[List[int]]]: A tuple containing a list of DataProto objects
        and a list of index lists.
    """
    batch, batch_idx_list = rearrange_micro_batches(data.batch, max_token_len=max_token_len)
    micro_batches = []
    for i, batch_idx in enumerate(batch_idx_list):
        tensors = dict(batch[i])
        non_tensors = {key: value[batch_idx] for key, value in data.non_tensor_batch.items()}
        micro_batches.append(DataProto.from_dict(tensors, non_tensors))

    return micro_batches, batch_idx_list


def restore_dynamic_batch(data: torch.Tensor, batch_idx_list: list[list[int]]) -> torch.Tensor:
    """
    Restore a batch from dynamic batching.

    Args:
        data (torch.Tensor): The input data.
        batch_idx_list (List[List[int]]): The list of index lists.

    Returns:
        torch.Tensor: The restored data.
    """
    indices = list(chain.from_iterable(batch_idx_list))
    revert_indices = torch.tensor(get_reverse_idx(indices), dtype=torch.long)
    return data[revert_indices]