dist_checkpointing.py 2.03 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from megatron.core import dist_checkpointing, mpu
from megatron.core.dist_checkpointing.serialization import (
    get_default_load_sharded_strategy,
    get_default_save_sharded_strategy,
)
from megatron.core.dist_checkpointing.strategies.fully_parallel import (
    FullyParallelLoadStrategyWrapper,
    FullyParallelSaveStrategyWrapper,
)


def save_dist_checkpointing(sharded_state_dict, ckpt_path, async_save=False):
    validate_sharding_integrity = True
    # Get checkpointing strategies
    save_strategy = get_default_save_sharded_strategy("torch_dist")
    save_strategy = FullyParallelSaveStrategyWrapper(
        save_strategy, mpu.get_data_parallel_group(with_context_parallel=True)
    )

    # Save model sharded state dicts
    async_save_request = dist_checkpointing.save(
        sharded_state_dict,
        ckpt_path,
        sharded_strategy=save_strategy,
        async_sharded_save=async_save,
        validate_access_integrity=validate_sharding_integrity,
    )

    return async_save_request


def load_dist_checkpointing(sharded_state_dict, ckpt_dir):
    # Get checkpointing strategies
    load_strategy = get_default_load_sharded_strategy(ckpt_dir)
    load_strategy = FullyParallelLoadStrategyWrapper(
        load_strategy, mpu.get_data_parallel_group(with_context_parallel=True)
    )

    # Load model sharded state dicts
    state_dict = dist_checkpointing.load(sharded_state_dict, ckpt_dir, sharded_strategy=load_strategy)

    return state_dict