aggregate_logger.py 4.7 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A Ray logger will receive logging info from different processes.
"""

import datetime
import logging
import numbers
import pprint

import torch


def concat_dict_to_str(dict: dict, step):
    output = [f"step:{step}"]
    for k, v in dict.items():
        if isinstance(v, numbers.Number):
            output.append(f"{k}:{pprint.pformat(v)}")
    output_str = " - ".join(output)
    return output_str


class LocalLogger:
    """
    A local logger that logs messages to the console.

    Args:
        print_to_console (bool): Whether to print to the console.
    """

    def __init__(self, print_to_console=True):
        self.print_to_console = print_to_console

    def flush(self):
        pass

    def log(self, data, step):
        if self.print_to_console:
            print(concat_dict_to_str(data, step=step), flush=True)


class DecoratorLoggerBase:
    """
    Base class for all decorators that log messages.

    Args:
        role (str): The role (the name) of the logger.
        logger (logging.Logger): The logger instance to use for logging.
        level (int): The logging level.
        rank (int): The rank of the process.
        log_only_rank_0 (bool): If True, only log for rank 0.
    """

    def __init__(
        self, role: str, logger: logging.Logger = None, level=logging.DEBUG, rank: int = 0, log_only_rank_0: bool = True
    ):
        self.role = role
        self.logger = logger
        self.level = level
        self.rank = rank
        self.log_only_rank_0 = log_only_rank_0
        self.logging_function = self.log_by_logging
        if logger is None:
            self.logging_function = self.log_by_print

    def log_by_print(self, log_str):
        if not self.log_only_rank_0 or self.rank == 0:
            print(f"{self.role} {log_str}", flush=True)

    def log_by_logging(self, log_str):
        if self.logger is None:
            raise ValueError("Logger is not initialized")
        if not self.log_only_rank_0 or self.rank == 0:
            self.logger.log(self.level, f"{self.role} {log_str}")


def print_rank_0(message):
    """If distributed is initialized, print only on rank 0."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True)
    else:
        print(message, flush=True)


def print_with_rank(message: str, rank: int = 0, log_only_rank_0: bool = False):
    """_summary_
    Print a message with rank information.
    This function prints the message only if `log_only_rank_0` is False or if the rank is 0.

    Args:
        message (str): _description_
        rank (int, optional): _description_. Defaults to 0.
        log_only_rank_0 (bool, optional): _description_. Defaults to False.
    """
    if not log_only_rank_0 or rank == 0:
        print(f"[Rank {rank}] {message}", flush=True)


def print_with_rank_and_timer(message: str, rank: int = 0, log_only_rank_0: bool = False):
    """_summary_
    Print a message with rank information and a timestamp.
    This function prints the message only if `log_only_rank_0` is False or if the rank is 0.

    Args:
        message (str): _description_
        rank (int, optional): _description_. Defaults to 0.
        log_only_rank_0 (bool, optional): _description_. Defaults to False.
    """
    now = datetime.datetime.now()
    message = f"[{now.strftime('%Y-%m-%d %H:%M:%S')}] [Rank {rank}] {message}"
    if not log_only_rank_0 or rank == 0:
        print(message, flush=True)


def log_with_rank(message: str, rank, logger: logging.Logger, level=logging.INFO, log_only_rank_0: bool = False):
    """_summary_
    Log a message with rank information using a logger.
    This function logs the message only if `log_only_rank_0` is False or if the rank is 0.
    Args:
        message (str): The message to log.
        rank (int): The rank of the process.
        logger (logging.Logger): The logger instance to use for logging.
        level (int, optional): The logging level. Defaults to logging.INFO.
        log_only_rank_0 (bool, optional): If True, only log for rank 0. Defaults to False.
    """
    if not log_only_rank_0 or rank == 0:
        logger.log(level, f"[Rank {rank}] {message}")