rl_dataset.py 14.2 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023-2024 SGLang Team
# Copyright 2025 ModelBest Inc. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
import os
import re
from collections import defaultdict
from typing import Optional

import datasets
import numpy as np
import torch
from omegaconf import DictConfig, ListConfig
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer, ProcessorMixin

import verl.utils.torch_functional as verl_F
from verl.utils.model import compute_position_id_with_mask

logger = logging.getLogger(__name__)


def collate_fn(data_list: list[dict]) -> dict:
    """
    Collate a batch of sample dicts into batched tensors and arrays.

    Args:
        data_list: List of dicts mapping feature names to torch.Tensor or other values.

    Returns:
        Dict where tensor entries are stacked into a torch.Tensor of shape
        (batch_size, \*dims) and non-tensor entries are converted to
        np.ndarray of dtype object with shape (batch_size,).
    """
    tensors = defaultdict(list)
    non_tensors = defaultdict(list)

    for data in data_list:
        for key, val in data.items():
            if isinstance(val, torch.Tensor):
                tensors[key].append(val)
            else:
                non_tensors[key].append(val)

    for key, val in tensors.items():
        tensors[key] = torch.stack(val, dim=0)

    for key, val in non_tensors.items():
        non_tensors[key] = np.array(val, dtype=object)

    return {**tensors, **non_tensors}


class RLHFDataset(Dataset):
    """
    Load and preprocess RLHF data from Parquet files.

    - Caches files locally.
    - Reads into a HuggingFace Dataset and tokenizes prompts.
    - Optionally handles images/videos via a ProcessorMixin.
    - Filters prompts over a max length.
    - Supports resuming from checkpoints.

    Args:
        data_files (str or list): Path(s) to Parquet file(s).
        tokenizer (PreTrainedTokenizer): For the tokenization of text to token IDs.
        config (DictConfig): Options like cache_dir, prompt_key, max_prompt_length, truncation, etc.
        processor (ProcessorMixin, optional): Multimodal preprocessor for images/videos.
    """

    def __init__(
        self,
        data_files: str | list[str],
        tokenizer: PreTrainedTokenizer,
        config: DictConfig,
        processor: Optional[ProcessorMixin] = None,
    ):
        if not isinstance(data_files, list | ListConfig):
            data_files = [data_files]

        self.data_files = copy.deepcopy(data_files)
        self.original_data_files = copy.deepcopy(data_files)  # use for resume
        self.tokenizer = tokenizer
        self.processor = processor
        self.config = config

        self.cache_dir = os.path.expanduser(config.get("cache_dir", "~/.cache/verl/rlhf"))
        self.prompt_key = config.get("prompt_key", "prompt")
        self.image_key = config.get("image_key", "images")
        self.video_key = config.get("video_key", "videos")
        self.max_prompt_length = config.get("max_prompt_length", 1024)
        self.return_raw_chat = config.get("return_raw_chat", False)
        self.return_full_prompt = config.get("return_full_prompt", False)
        self.truncation = config.get("truncation", "error")
        self.filter_overlong_prompts = config.get("filter_overlong_prompts", True)

        self.num_workers = config.get("filter_overlong_prompts_workers", max(1, os.cpu_count() // 4))
        self.num_workers = min(self.num_workers, os.cpu_count())
        self.use_shm = config.get("use_shm", False)
        self.chat_template_func = config.get("chat_template_func", None)
        self.need_tools_kwargs = config.get("need_tools_kwargs", False)
        self.filter_prompts = config.get("filter_prompts", True)
        self.serialize_dataset = False
        self.return_multi_modal_inputs = config.get("return_multi_modal_inputs", True)

        self._download()
        self._read_files_and_tokenize()

    def _download(self, use_origin_parquet=False):
        from verl.utils.fs import copy_to_local

        data_files = self.data_files if not use_origin_parquet else self.original_data_files
        for i, parquet_file in enumerate(data_files):
            self.data_files[i] = copy_to_local(src=parquet_file, cache_dir=self.cache_dir, use_shm=self.use_shm)

    def _read_files_and_tokenize(self):
        dataframes = []
        for parquet_file in self.data_files:
            # read parquet files and cache
            dataframe = datasets.load_dataset("parquet", data_files=parquet_file)["train"]
            dataframes.append(dataframe)
        self.dataframe: datasets.Dataset = datasets.concatenate_datasets(dataframes)

        print(f"dataset len: {len(self.dataframe)}")

        self.dataframe = self.maybe_filter_out_long_prompts(self.dataframe)

    def maybe_filter_out_long_prompts(self, dataframe: datasets.Dataset = None):
        # filter out too long prompts
        if self.filter_overlong_prompts:
            tokenizer = self.tokenizer
            processor = self.processor
            prompt_key = self.prompt_key
            image_key = self.image_key
            video_key = self.video_key

            if processor is not None:
                from verl.utils.dataset.vision_utils import process_image, process_video

                def doc2len(doc) -> int:
                    messages = self._build_messages(doc)
                    raw_prompt = self.processor.apply_chat_template(
                        messages, add_generation_prompt=True, tokenize=False
                    )
                    images = [process_image(image) for image in doc[image_key]] if image_key in doc else None
                    videos = [process_video(video) for video in doc[video_key]] if video_key in doc else None

                    return len(processor(text=[raw_prompt], images=images, videos=videos)["input_ids"][0])

            else:

                def doc2len(doc) -> int:
                    return len(tokenizer.apply_chat_template(doc[prompt_key], add_generation_prompt=True))

            dataframe = dataframe.filter(
                lambda doc: doc2len(doc) <= self.max_prompt_length,
                num_proc=self.num_workers,
                desc=f"Filtering prompts longer than {self.max_prompt_length} tokens",
            )

            print(f"filter dataset len: {len(dataframe)}")
        return dataframe

    def resume_dataset_state(self):
        self.serialize_dataset = not hasattr(self, "original_data_files")
        # resume dataframe if not it's serialized in data.pt
        if not self.serialize_dataset:
            self._download(use_origin_parquet=True)  # download and resume from original parquet files
            self._read_files_and_tokenize()
        else:
            print(r"old dataloader ckpt file is used, please train from scratch for better ckpt performance")

    def __len__(self):
        return len(self.dataframe)

    def _build_messages(self, example: dict):
        messages: list = example.pop(self.prompt_key)

        if self.image_key in example or self.video_key in example:
            for message in messages:
                content = message["content"]
                content_list = []
                segments = re.split("(<image>|<video>)", content)
                segments = [item for item in segments if item != ""]
                for segment in segments:
                    if segment == "<image>":
                        content_list.append({"type": "image"})
                    elif segment == "<video>":
                        content_list.append({"type": "video"})
                    else:
                        content_list.append({"type": "text", "text": segment})

                message["content"] = content_list

        return messages

    def __getitem__(self, item):
        """
        Note that we also return the raw_input_ids so that it can be combined with other chat template
        """
        row_dict: dict = self.dataframe[item]
        messages = self._build_messages(row_dict)
        model_inputs = {}

        if self.processor is not None:
            from verl.utils.dataset.vision_utils import process_image, process_video

            raw_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
            multi_modal_data = {}

            images = None
            if self.image_key in row_dict and row_dict.get(self.image_key, None) is not None:
                images = [process_image(image) for image in row_dict.pop(self.image_key)]

                # due to the image key is "image" instead of "images" in vllm, we need to use "image" here
                # link: https://github.com/vllm-project/vllm/blob/3c545c0c3b98ee642373a308197d750d0e449403/vllm/multimodal/parse.py#L205
                multi_modal_data["image"] = images

            videos = None
            if self.video_key in row_dict and row_dict.get(self.video_key, None) is not None:
                videos = [process_video(video) for video in row_dict.pop(self.video_key)]

                # due to the video key is "video" instead of "videos" in vllm, we need to use "video" here
                # link: https://github.com/vllm-project/vllm/blob/3c545c0c3b98ee642373a308197d750d0e449403/vllm/multimodal/parse.py#L205
                multi_modal_data["video"] = [video.numpy() for video in videos]

            model_inputs = self.processor(text=[raw_prompt], images=images, videos=videos, return_tensors="pt")

            input_ids = model_inputs.pop("input_ids")
            attention_mask = model_inputs.pop("attention_mask")

            if "second_per_grid_ts" in model_inputs:
                model_inputs.pop("second_per_grid_ts")

            # There's a trap here, multi_modal_inputs has to be a dict, not BatchFeature
            row_dict["multi_modal_data"] = multi_modal_data

            # We will do batch.union() in the trainer,
            # so we cannot have "multi_modal_inputs" in row_dict if rollout generates new multi_modal_inputs
            if self.return_multi_modal_inputs:
                row_dict["multi_modal_inputs"] = dict(model_inputs)

                # second_per_grid_ts isn't used for training, just for mrope
                row_dict["multi_modal_inputs"].pop("second_per_grid_ts", None)

        else:
            raw_prompt = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
            model_inputs = self.tokenizer(raw_prompt, return_tensors="pt", add_special_tokens=False)
            input_ids = model_inputs.pop("input_ids")
            attention_mask = model_inputs.pop("attention_mask")

        input_ids, attention_mask = verl_F.postprocess_data(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_length=self.max_prompt_length,
            pad_token_id=self.tokenizer.pad_token_id,
            left_pad=True,
            truncation=self.truncation,
        )

        if self.processor is not None and "Qwen2VLImageProcessor" in self.processor.image_processor.__class__.__name__:
            from verl.models.transformers.qwen2_vl import get_rope_index

            position_ids = [
                get_rope_index(
                    self.processor,
                    input_ids=input_ids[0],
                    image_grid_thw=model_inputs.get("image_grid_thw"),
                    video_grid_thw=model_inputs.get("video_grid_thw"),
                    second_per_grid_ts=model_inputs.get("second_per_grid_ts"),
                    attention_mask=attention_mask[0],
                )
            ]  # (1, 3, seq_len)

        else:
            position_ids = compute_position_id_with_mask(attention_mask)

        row_dict["input_ids"] = input_ids[0]
        row_dict["attention_mask"] = attention_mask[0]
        row_dict["position_ids"] = position_ids[0]

        raw_prompt_ids = self.tokenizer.encode(raw_prompt, add_special_tokens=False)
        if len(raw_prompt_ids) > self.max_prompt_length:
            if self.truncation == "left":
                raw_prompt_ids = raw_prompt_ids[-self.max_prompt_length :]
            elif self.truncation == "right":
                raw_prompt_ids = raw_prompt_ids[: self.max_prompt_length]
            elif self.truncation == "middle":
                left_half = self.max_prompt_length // 2
                right_half = self.max_prompt_length - left_half
                raw_prompt_ids = raw_prompt_ids[:left_half] + raw_prompt_ids[-right_half:]
            elif self.truncation == "error":
                raise RuntimeError(f"Prompt length {len(raw_prompt_ids)} is longer than {self.max_prompt_length}.")

        row_dict["raw_prompt_ids"] = raw_prompt_ids
        # encode prompts without chat template
        if self.return_raw_chat:
            row_dict["raw_prompt"] = messages

        # get prompts with chat template
        if self.return_full_prompt:
            row_dict["full_prompts"] = raw_prompt  # array of strings

        # add index for each prompt
        index = row_dict.get("extra_info", {}).get("index", 0)
        tools_kwargs = row_dict.get("extra_info", {}).get("tools_kwargs", {})
        interaction_kwargs = row_dict.get("extra_info", {}).get("interaction_kwargs", {})
        need_tools_kwargs = row_dict.get("extra_info", {}).get("need_tools_kwargs", self.need_tools_kwargs)
        if need_tools_kwargs and not tools_kwargs:
            logger.warning("tools_kwargs is empty for index {}, data source: {}", index, row_dict["data_source"])
        row_dict["index"] = index
        row_dict["tools_kwargs"] = tools_kwargs
        row_dict["interaction_kwargs"] = interaction_kwargs
        return row_dict

    def __getstate__(self):
        if not self.serialize_dataset:
            state = self.__dict__.copy()

            if "dataframe" in state:
                del state["dataframe"]
            return state

        return self.__dict__.copy()