main_ppo.py 14 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
"""

import os
import socket

import hydra
import ray
from omegaconf import OmegaConf

from verl.experimental.dataset.sampler import AbstractSampler
from verl.trainer.constants_ppo import get_ppo_ray_runtime_env
from verl.trainer.ppo.ray_trainer import RayPPOTrainer
from verl.trainer.ppo.reward import load_reward_manager
from verl.utils.device import is_cuda_available
from verl.utils.import_utils import load_extern_type


@hydra.main(config_path="config", config_name="ppo_trainer", version_base=None)
def main(config):
    """Main entry point for PPO training with Hydra configuration management.

    Args:
        config_dict: Hydra configuration dictionary containing training parameters.
    """
    run_ppo(config)


# Define a function to run the PPO-like training process
def run_ppo(config) -> None:
    """Initialize Ray cluster and run distributed PPO training process.

    Args:
        config: Training configuration object containing all necessary parameters
                for distributed PPO training including Ray initialization settings,
                model paths, and training hyperparameters.
    """
    # Check if Ray is not initialized
    if not ray.is_initialized():
        # Initialize Ray with a local cluster configuration
        # Set environment variables in the runtime environment to control tokenizer parallelism,
        # NCCL debug level, VLLM logging level, and allow runtime LoRA updating
        # `num_cpus` specifies the number of CPU cores Ray can use, obtained from the configuration
       # print("HIP_VISIBLE_DEVICES =", os.environ.get("HIP_VISIBLE_DEVICES"))
       # print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
        ray.init(
            runtime_env=get_ppo_ray_runtime_env(),
            num_cpus=config.ray_init.num_cpus,
            num_gpus=8,
        )

    if (
        is_cuda_available
        and config.trainer.get("profile_steps") is not None
        and len(config.trainer.get("profile_steps", [])) > 0
    ):
        nsight_options = OmegaConf.to_container(config.trainer.controller_nsight_options)
        runner = TaskRunner.options(runtime_env={"nsight": nsight_options}).remote()
    else:
        runner = TaskRunner.remote()
    ray.get(runner.run.remote(config))

    # [Optional] get the path of the timeline trace file from the configuration, default to None
    # This file is used for performance analysis
    timeline_json_file = config.ray_init.get("timeline_json_file", None)
    if timeline_json_file:
        ray.timeline(filename=timeline_json_file)


@ray.remote(num_cpus=1)  # please make sure main_task is not scheduled on head
class TaskRunner:
    """Ray remote class for executing distributed PPO training tasks.

    This class encapsulates the main training logic and runs as a Ray remote actor
    to enable distributed execution across multiple nodes and GPUs.
    """

    def run(self, config):
        """Execute the main PPO training workflow.

        This method sets up the distributed training environment, initializes
        workers, datasets, and reward functions, then starts the training process.

        Args:
            config: Training configuration object containing all parameters needed
                   for setting up and running the PPO training process.
        """
        # Print the initial configuration. `resolve=True` will evaluate symbolic values.
        from pprint import pprint

        from omegaconf import OmegaConf

        from verl.utils.fs import copy_to_local

        print(f"TaskRunner hostname: {socket.gethostname()}, PID: {os.getpid()}")
        pprint(OmegaConf.to_container(config, resolve=True))
        OmegaConf.resolve(config)

        # Download the checkpoint from HDFS to the local machine.
        # `use_shm` determines whether to use shared memory, which could lead to faster model loading if turned on
        local_path = copy_to_local(
            config.actor_rollout_ref.model.path, use_shm=config.actor_rollout_ref.model.get("use_shm", False)
        )

        # Instantiate the tokenizer and processor.
        from verl.utils import hf_processor, hf_tokenizer

        trust_remote_code = config.data.get("trust_remote_code", False)
        tokenizer = hf_tokenizer(local_path, trust_remote_code=trust_remote_code)
        # Used for multimodal LLM, could be None
        processor = hf_processor(local_path, trust_remote_code=trust_remote_code, use_fast=True)

        # Define worker classes based on the actor strategy.
        if config.actor_rollout_ref.actor.strategy in {"fsdp", "fsdp2"}:
            assert config.critic.strategy in {"fsdp", "fsdp2"}
            from verl.single_controller.ray import RayWorkerGroup
            from verl.workers.fsdp_workers import ActorRolloutRefWorker, AsyncActorRolloutRefWorker

            use_legacy_worker_impl = config.trainer.get("use_legacy_worker_impl", "auto")
            if use_legacy_worker_impl in ["auto", "enable"]:
                # import warnings
                # warnings.warn(f"Legacy worker impl is going to be deprecated, will be removed in the future. \
                #   Please set trainer.use_legacy_worker_impl = false to switch to the new worker implementation.")
                from verl.workers.fsdp_workers import CriticWorker
            elif use_legacy_worker_impl == "disable":
                from verl.workers.roles import CriticWorker

                print("Using new worker implementation")
            else:
                raise ValueError(f"Invalid use_legacy_worker_impl: {use_legacy_worker_impl}")

            actor_rollout_cls = (
                AsyncActorRolloutRefWorker
                if config.actor_rollout_ref.rollout.mode == "async"
                else ActorRolloutRefWorker
            )
            ray_worker_group_cls = RayWorkerGroup

        elif config.actor_rollout_ref.actor.strategy == "megatron":
            assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
            from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup
            from verl.workers.megatron_workers import ActorRolloutRefWorker, AsyncActorRolloutRefWorker, CriticWorker

            actor_rollout_cls = (
                AsyncActorRolloutRefWorker
                if config.actor_rollout_ref.rollout.mode == "async"
                else ActorRolloutRefWorker
            )
            ray_worker_group_cls = NVMegatronRayWorkerGroup

        else:
            raise NotImplementedError

        from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role

        # Map roles to their corresponding remote worker classes.
        role_worker_mapping = {
            Role.ActorRollout: ray.remote(actor_rollout_cls),
            Role.Critic: ray.remote(CriticWorker),
        }

        # Define the resource pool specification.
        # Map roles to the resource pool.
        global_pool_id = "global_pool"
        resource_pool_spec = {
            global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
        }
        mapping = {
            Role.ActorRollout: global_pool_id,
            Role.Critic: global_pool_id,
        }

        # We should adopt a multi-source reward function here:
        # - for rule-based rm, we directly call a reward score
        # - for model-based rm, we call a model
        # - for code related prompt, we send to a sandbox if there are test cases
        # finally, we combine all the rewards together
        # The reward type depends on the tag of the data
        if config.reward_model.enable:
            if config.reward_model.strategy in {"fsdp", "fsdp2"}:
                from verl.workers.fsdp_workers import RewardModelWorker
            elif config.reward_model.strategy == "megatron":
                from verl.workers.megatron_workers import RewardModelWorker
            else:
                raise NotImplementedError
            role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker)
            mapping[Role.RewardModel] = global_pool_id

        # Add a reference policy worker if KL loss or KL reward is used.
        if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss:
            role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker)
            mapping[Role.RefPolicy] = global_pool_id

        # Load the reward manager for training and validation.
        reward_fn = load_reward_manager(
            config, tokenizer, num_examine=0, **config.reward_model.get("reward_kwargs", {})
        )
        val_reward_fn = load_reward_manager(
            config, tokenizer, num_examine=1, **config.reward_model.get("reward_kwargs", {})
        )
        resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

        from verl.utils.dataset.rl_dataset import collate_fn

        # Create training and validation datasets.
        train_dataset = create_rl_dataset(config.data.train_files, config.data, tokenizer, processor, is_train=True)
        val_dataset = create_rl_dataset(config.data.val_files, config.data, tokenizer, processor, is_train=False)
        train_sampler = create_rl_sampler(config.data, train_dataset)

        # Initialize the PPO trainer.
        trainer = RayPPOTrainer(
            config=config,
            tokenizer=tokenizer,
            processor=processor,
            role_worker_mapping=role_worker_mapping,
            resource_pool_manager=resource_pool_manager,
            ray_worker_group_cls=ray_worker_group_cls,
            reward_fn=reward_fn,
            val_reward_fn=val_reward_fn,
            train_dataset=train_dataset,
            val_dataset=val_dataset,
            collate_fn=collate_fn,
            train_sampler=train_sampler,
        )
        # Initialize the workers of the trainer.
        trainer.init_workers()
        # Start the training process.
        trainer.fit()


def create_rl_dataset(data_paths, data_config, tokenizer, processor, is_train=True):
    """Create a dataset.

    Arguments:
        data_paths: List of paths to data files.
        data_config: The data config.
        tokenizer (Tokenizer): The tokenizer.
        processor (Processor): The processor.

    Returns:
        dataset (Dataset): The dataset.
    """
    from torch.utils.data import Dataset

    from verl.utils.dataset.rl_dataset import RLHFDataset

    # Check if a custom dataset class is specified in the data configuration
    # and if the path to the custom class is provided
    if "custom_cls" in data_config and data_config.custom_cls.get("path", None) is not None:
        # Dynamically load the custom dataset class
        dataset_cls = load_extern_type(data_config.custom_cls.path, data_config.custom_cls.name)
        # Verify that the custom dataset class inherits from torch.utils.data.Dataset
        if not issubclass(dataset_cls, Dataset):
            raise TypeError(
                f"The custom dataset class '{data_config.custom_cls.name}' from "
                f"'{data_config.custom_cls.path}' must inherit from torch.utils.data.Dataset"
            )
    elif "datagen" in data_config and data_config.datagen.get("path", None) is not None and is_train:
        # If a data generation strategy is specified, use the DynamicGenDataset class
        from verl.utils.dataset.dynamicgen_dataset import DynamicGenDataset

        dataset_cls = DynamicGenDataset
        print("Using DynamicGenDataset for data generation.")

    else:
        # Use the default RLHFDataset class if no custom class is specified
        dataset_cls = RLHFDataset
    print(f"Using dataset class: {dataset_cls.__name__}")

    # Instantiate the dataset using the determined dataset class
    dataset = dataset_cls(
        data_files=data_paths,
        tokenizer=tokenizer,
        processor=processor,
        config=data_config,
    )

    return dataset


def create_rl_sampler(data_config, dataset):
    """Create a sampler for the dataset.

    Arguments:
        data_config: The data config.
        dataset (Dataset): The dataset.

    Returns:
        sampler (Sampler): The sampler.
    """
    import torch
    from torch.utils.data import RandomSampler, SequentialSampler

    if data_config.sampler is not None and data_config.sampler.get("class_path", None) is not None:
        curriculum_class = load_extern_type(
            data_config.sampler.class_path,
            data_config.sampler.class_name,
        )
        sampler = curriculum_class(
            data_source=dataset,
            data_config=data_config,
        )
        assert isinstance(sampler, AbstractSampler)
        assert data_config.get("dataloader_num_workers", 8) == 0, (
            "If using curriculum, num_workers must be 0 to prevent data caching. "
            "If the dataloader caches data before the batch is done the "
            "curriculum sampler won't have the opportunity to reorder it. "
        )

    # Use a sampler to facilitate checkpoint resumption.
    # If shuffling is enabled in the data configuration, create a random sampler.
    elif data_config.shuffle:
        train_dataloader_generator = torch.Generator()
        train_dataloader_generator.manual_seed(data_config.get("seed", 1))
        sampler = RandomSampler(data_source=dataset, generator=train_dataloader_generator)
    else:
        # If shuffling is disabled, use a sequential sampler to iterate through the dataset in order.
        sampler = SequentialSampler(data_source=dataset)

    return sampler


if __name__ == "__main__":
    main()