kimi_vl.py 8.04 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
import torch.nn.functional as F
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import _flash_attention_forward

from verl.utils.ulysses import (
    gather_heads_scatter_seq,
    gather_seq_scatter_heads,
    get_ulysses_sequence_parallel_world_size,
    validate_ulysses_config,
)


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)

    b, h, s, d = q.shape
    q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

    b, h, s, d = k.shape
    k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def _ulysses_flash_attn_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.LongTensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    **kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
    bsz, q_len, _ = hidden_states.size()

    if self.q_lora_rank is None:
        q = self.q_proj(hidden_states)
    else:
        q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
    q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)

    # Flash attention requires the input to have the shape
    # batch_size x seq_length x head_dim x hidden_dim
    # therefore we just need to keep the original shape
    compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
    compressed_kv, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
    k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
    kv = (
        self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
        .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
        .transpose(1, 2)
    )

    k_nope, value_states = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)

    # patch
    ulysses_sp_size = get_ulysses_sequence_parallel_world_size()
    if ulysses_sp_size > 1:
        validate_ulysses_config(self.num_heads, ulysses_sp_size)

        num_key_value_groups = self.config.num_attention_heads // self.config.num_key_value_heads
        k_pe = repeat_kv(k_pe, ulysses_sp_size)  # to keep heads=1 after a2a
        k_nope = repeat_kv(k_nope, num_key_value_groups)
        value_states = repeat_kv(value_states, num_key_value_groups)
        q = gather_seq_scatter_heads(q, seq_dim=2, head_dim=1)
        k_pe = gather_seq_scatter_heads(k_pe, seq_dim=2, head_dim=1)
        k_nope = gather_seq_scatter_heads(k_nope, seq_dim=2, head_dim=1)
        value_states = gather_seq_scatter_heads(value_states, seq_dim=2, head_dim=1)
        # (batch_size, num_head / sp_size, seq_length, head_size)
        full_q_len = q.size(2)  # full_q_len = seq_length

    else:
        full_q_len = q_len

    q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
    cos, sin = self.rotary_emb(value_states, seq_len=full_q_len)
    q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)

    query_states = k_pe.new_empty(bsz, self.num_heads // ulysses_sp_size, full_q_len, self.q_head_dim)
    query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
    query_states[:, :, :, self.qk_nope_head_dim :] = q_pe

    key_states = k_pe.new_empty(bsz, self.num_heads // ulysses_sp_size, full_q_len, self.q_head_dim)
    key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
    key_states[:, :, :, self.qk_nope_head_dim :] = k_pe

    if self.q_head_dim != self.v_head_dim:
        value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])

    # TODO: These transpose are quite inefficient but Flash Attention requires the layout
    # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
    # to be able to avoid many of these transpose/reshape/view.
    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    dropout_rate = self.attention_dropout if self.training else 0.0

    attn_output = _flash_attention_forward(
        query_states,
        key_states,
        value_states,
        attention_mask,
        full_q_len,
        dropout=dropout_rate,
        sliding_window=None,
        is_causal=self.is_causal,
        use_top_left_mask=self._flash_attn_uses_top_left_mask,
        position_ids=position_ids,  # important: pass position ids
        softmax_scale=self.softmax_scale,
    )

    if ulysses_sp_size > 1:
        attn_output = gather_heads_scatter_seq(attn_output, head_dim=2, seq_dim=1)

    if self.q_head_dim != self.v_head_dim:
        attn_output = attn_output[:, :, :, : self.v_head_dim]

    attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim).contiguous()
    attn_output = self.o_proj(attn_output)

    return attn_output, None, None