dense_common.py 6.59 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Union

import torch
from transformers.cache_utils import Cache
from transformers.modeling_outputs import CausalLMOutputWithPast


@dataclass
class CausalLMOutputForPPO(CausalLMOutputWithPast):
    log_probs: Optional[torch.FloatTensor] = None
    entropy: Optional[torch.FloatTensor] = None


def forward_base_model(
    self,
    input_ids: Optional[torch.LongTensor] = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[Cache] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cache_position: Optional[torch.LongTensor] = None,
) -> CausalLMOutputWithPast:
    r"""
    Copy paste LLaMa's forward
    https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/model/llama.py

    This function should be generic enough for all pure text models.
    ```"""

    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
        cache_position=cache_position,
    )

    return outputs


def forward_with_torch_backend(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[Union["Cache", list[torch.FloatTensor]]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cache_position: Optional[torch.LongTensor] = None,
    logits_to_keep: int | torch.Tensor = 0,
    temperature: float = 1.0,
    **loss_kwargs,
) -> tuple | CausalLMOutputForPPO:
    from verl.utils.experimental.torch_functional import FusedLinearForPPO

    outputs = forward_base_model(
        self,
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        cache_position=cache_position,
    )

    hidden_states = outputs[0]

    if not return_dict:
        raise NotImplementedError("forward_with_torch_backend has to return_dict")

    # Loss calculations
    if labels is not None:
        rolled_labels = torch.roll(labels, shifts=-1, dims=-1)
    elif input_ids is not None:
        rolled_labels = torch.roll(input_ids, shifts=-1, dims=-1)
    else:
        raise RuntimeError("To use forward_with_torch_backend, either labels or input_ids must be provided.")

    fused_linear_for_ppo = FusedLinearForPPO()
    log_probs, entropy = fused_linear_for_ppo.forward(
        hidden_states=hidden_states,
        vocab_weights=self.lm_head.weight,
        input_ids=rolled_labels,
        temperature=temperature,
    )

    return CausalLMOutputForPPO(
        log_probs=log_probs,
        entropy=entropy,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )


def forward_with_triton_backend(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[Union["Cache", list[torch.FloatTensor]]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cache_position: Optional[torch.LongTensor] = None,
    logits_to_keep: int | torch.Tensor = 0,
    temperature: float = 1.0,
    **loss_kwargs,
) -> tuple | CausalLMOutputForPPO:
    from verl.utils.kernel.linear_cross_entropy import linear_cross_entropy

    outputs = forward_base_model(
        self,
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
        cache_position=cache_position,
    )

    hidden_states = outputs[0]

    if not return_dict:
        raise NotImplementedError("forward_with_triton_backend has to return_dict")

    # Loss calculations
    if labels is not None:
        rolled_labels = torch.roll(labels, shifts=-1, dims=-1)
    elif input_ids is not None:
        rolled_labels = torch.roll(input_ids, shifts=-1, dims=-1)
    else:
        raise RuntimeError("To use forward_with_triton_backend, either labels or input_ids must be provided.")

    log_probs, entropy = linear_cross_entropy(
        hidden_states,
        self.lm_head.weight,
        rolled_labels,
        temperature,
        "none",
    )

    return CausalLMOutputForPPO(
        log_probs=log_probs,
        entropy=entropy,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )