util.py 10.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright 2025 Bytedance Ltd. and/or its affiliates
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from megatron.core import parallel_state as mpu
from megatron.core.packed_seq_params import PackedSeqParams

from verl.utils.model import CausalLMOutputForPPO


def preprocess_packed_seqs(
    input_ids: torch.Tensor, attention_mask: torch.Tensor, pre_process: bool = True
) -> tuple[torch.Tensor, PackedSeqParams]:
    """
    Preprocess packed sequences
    CP splits sequence into CP*2 chunks, and each GPU gets 2 chunks (GPU0 gets first and last chunks, GPU1
    gets second and second last chunks, and so on), this is for load balancing with causal masking.
    See https://github.com/NVIDIA/TransformerEngine/issues/1368
    """
    batch_size = input_ids.shape[0]

    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    tp_size = mpu.get_tensor_model_parallel_world_size()
    cp_size = mpu.get_context_parallel_world_size()
    cp_rank = mpu.get_context_parallel_rank()
    align_size = tp_size * cp_size * 2 if cp_size > 1 else tp_size

    pad_size = (align_size - seqlens_in_batch % align_size) % align_size
    seqlens_in_batch_padded = seqlens_in_batch + pad_size

    cu_seqlens = torch.zeros(batch_size + 1, dtype=torch.int32, device=input_ids.device)
    cu_seqlens[1:] = torch.cumsum(seqlens_in_batch, dim=0)
    cu_seqlens_padded = torch.zeros(batch_size + 1, dtype=torch.int32, device=input_ids.device)
    cu_seqlens_padded[1:] = torch.cumsum(seqlens_in_batch_padded, dim=0)

    # ----------------------------------------------------------------------------
    # Move the index information needed in the subsequent loop to the CPU at once,
    # to avoid frequent .item() calls in the loop that cause D2H synchronization
    # ----------------------------------------------------------------------------
    seqlens_in_batch_cpu: list[int] = seqlens_in_batch.tolist()  # original valid lengths
    seqlens_in_batch_padded_cpu: list[int] = seqlens_in_batch_padded.tolist()  # lengths after padding
    cu_seqlens_padded_cpu: list[int] = cu_seqlens_padded.tolist()  # start positions (after padding)

    # Pure Python int calculation to avoid further synchronization
    max_seqlen_in_batch = max(seqlens_in_batch_padded_cpu)

    shape = list(input_ids.shape[1:])
    shape[0] = sum(seqlens_in_batch_padded_cpu) // cp_size
    if pre_process:
        input_ids_rmpad = torch.zeros(shape, dtype=input_ids.dtype, device=input_ids.device)
        for i in range(batch_size):
            # Use Python int, so no GPU→CPU sync in the loop
            if cp_size <= 1:
                seqlen = seqlens_in_batch_cpu[i]
                start_idx = cu_seqlens_padded_cpu[i]
                input_ids_rmpad[start_idx : start_idx + seqlen] = input_ids[i, attention_mask[i]]
                continue

            seqlen_padded_i = seqlens_in_batch_padded_cpu[i]
            seqlen = seqlen_padded_i // cp_size
            half_seqlen = seqlen // 2
            start_idx = cu_seqlens_padded_cpu[i] // cp_size
            # split to 2 chunks
            d = input_ids[i, attention_mask[i]]
            input_ids_rmpad[start_idx : start_idx + half_seqlen] = d[
                half_seqlen * cp_rank : half_seqlen * (cp_rank + 1)
            ]

            remain_start = seqlen_padded_i - half_seqlen * (cp_rank + 1)
            remain_end = seqlen_padded_i - half_seqlen * cp_rank
            remain_end = min(remain_end, d.shape[0])
            remain_len = remain_end - remain_start
            if remain_len > 0:
                input_ids_rmpad[start_idx + half_seqlen : start_idx + half_seqlen + remain_len] = d[
                    remain_start:remain_end
                ]

    packed_seq_params = PackedSeqParams(
        qkv_format="thd",
        cu_seqlens_q=cu_seqlens_padded,
        max_seqlen_q=max_seqlen_in_batch,
        cu_seqlens_kv=cu_seqlens_padded,
        max_seqlen_kv=max_seqlen_in_batch,
        cu_seqlens_q_padded=cu_seqlens_padded,
        cu_seqlens_kv_padded=cu_seqlens_padded,
    )
    if pre_process:
        return input_ids_rmpad.unsqueeze(0), packed_seq_params
    else:
        return input_ids, packed_seq_params


def postprocess_packed_seqs(
    output: torch.Tensor,
    packed_seq_params: PackedSeqParams,
    attention_mask: torch.Tensor,
    batch_size: int,
    seq_len: int,
    post_process: bool = True,
) -> torch.Tensor:
    """
    Postprocess packed sequences
    """
    if not post_process:
        return output

    # -------------------------------------------------------------------------
    # Move the lengths and offsets needed for subsequent Python-level indexing to the CPU in advance,
    # to avoid a large number of .item() calls in the loop
    # -------------------------------------------------------------------------
    cu_padded_cpu: list[int] = packed_seq_params.cu_seqlens_q_padded.tolist()
    seq_lens_cpu: list[int] = attention_mask.sum(dim=1, dtype=torch.int32).cpu().tolist()

    shape = [batch_size, seq_len] + list(output.shape[2:])  # 1,packed, dim -> batch_size, seq_len, dim
    output_new = torch.zeros(shape, dtype=output.dtype, device=output.device)

    cp_size = mpu.get_context_parallel_world_size()
    # all gather output across context parallel group
    if cp_size > 1:
        # output shape: [1, packed_len, hidden_dim]
        # need to gather across cp group and concatenate in sequence dimension
        output_list = [torch.empty_like(output) for _ in range(cp_size)]
        torch.distributed.all_gather(output_list, output.detach(), group=mpu.get_context_parallel_group())
        output_list[mpu.get_context_parallel_rank()] = output
    else:
        output_list = [output]
    for i in range(batch_size):
        if cp_size <= 1:
            s = seq_lens_cpu[i]
            start_idx = cu_padded_cpu[i]
            output_new[i, attention_mask[i]] = output[0][start_idx : start_idx + s]
            continue
        s_len_padded_chunk = (cu_padded_cpu[i + 1] - cu_padded_cpu[i]) // cp_size
        half_seqlen = s_len_padded_chunk // 2
        s_len = seq_lens_cpu[i]
        s_len_padded = s_len_padded_chunk * cp_size
        tmp = torch.empty(s_len_padded, *output.shape[2:], device=output.device)
        for j in range(cp_size):
            o = output_list[j][0]
            # split to 2 chunks
            packed_start_idx = cu_padded_cpu[i] // cp_size
            o0, o1 = (
                o[packed_start_idx : packed_start_idx + half_seqlen],
                o[packed_start_idx + half_seqlen : packed_start_idx + s_len_padded_chunk],
            )
            tmp[j * half_seqlen : (j + 1) * half_seqlen] = o0
            tmp[s_len_padded - (j + 1) * half_seqlen : s_len_padded - j * half_seqlen] = o1
        output_new[i, attention_mask[i]] = tmp[:s_len]

    return output_new


def remove_left_padding(
    input_ids: torch.Tensor,
    attention_mask: torch.Tensor,
    position_ids: torch.Tensor,
    sequence_parallel: bool = False,
    pre_process: bool = True,
):
    """
    Remove left padding from input_ids, attention_mask and position_ids
    return new_input_ids, new_attention_mask, new_position_ids
    """
    assert attention_mask.ndim == 2
    assert position_ids.ndim == 2
    cp_size = mpu.get_context_parallel_world_size()
    assert cp_size == 1, "Context parallel size without seq_pack is not supported"
    batch_size = input_ids.shape[0]
    shape = list(input_ids.shape)  # batch_size, seq_len,...
    seq_lens = attention_mask.sum(dim=1)
    seq_len = seq_lens.max().item()
    if sequence_parallel:
        sp_world_size = mpu.get_tensor_model_parallel_world_size()
        pad_size = (sp_world_size - seq_len % sp_world_size) % sp_world_size
        seq_len = seq_len + pad_size
    shape[1] = seq_len
    if pre_process:
        new_input_ids = torch.zeros(dtype=input_ids.dtype, device=input_ids.device, size=shape)
    new_attention_mask = torch.zeros(
        dtype=attention_mask.dtype, device=attention_mask.device, size=(batch_size, seq_len)
    )
    new_position_ids = torch.zeros(dtype=position_ids.dtype, device=position_ids.device, size=(batch_size, seq_len))
    for i in range(batch_size):
        if pre_process:
            new_input_ids[i, : seq_lens[i]] = input_ids[i, attention_mask[i]]
        new_attention_mask[i, : seq_lens[i]] = attention_mask[i, attention_mask[i]]
        new_position_ids[i, : seq_lens[i]] = position_ids[i, attention_mask[i]]
    if pre_process:
        return new_input_ids, new_attention_mask, new_position_ids
    else:
        return input_ids, new_attention_mask, new_position_ids


def recover_left_padding(
    result,
    attention_mask: torch.Tensor,
    original_attention_mask: torch.Tensor,
    origin_seqlen: int,
    post_process: bool = True,
):
    """
    Recover left padding from result
    return result
    """
    if not post_process:
        return result
    shape = list(result.shape)
    batch_size = shape[0]
    shape[1] = origin_seqlen
    new_result = torch.zeros(dtype=result.dtype, device=result.device, size=shape)
    for i in range(batch_size):
        new_result[i, original_attention_mask[i]] = result[i, attention_mask[i]]
    return new_result


def postprocess_packed_seqs_for_dict_output(
    labels_mask: torch.Tensor,
    output: CausalLMOutputForPPO,
    packed_seq_params: PackedSeqParams,
    attention_mask: torch.Tensor,
    batch_size: int,
    seq_len: int,
    post_process: bool = True,
) -> dict[str, torch.Tensor]:
    """_summary_
    For fused kernels, the output is a dictionary with keys like 'log_probs', 'entropy', etc.
    This function post-processes each tensor in the output dictionary.
    Args:
        output (CausalLMOutputForPPO): _description_
        packed_seq_params (PackedSeqParams): _description_
        attention_mask (torch.Tensor): _description_
        batch_size (int): _description_
        seq_len (int): _description_
        post_process (bool, optional): _description_. Defaults to True.
    Returns:
        CausalLMOutputForPPO: _description_
    """
    ret = {}
    output.entropy = output.entropy.view(1, -1)
    output.log_probs = output.log_probs.view(1, -1)
    output.log_probs = output.log_probs.masked_fill(~labels_mask, 0.0)
    ret["entropy"] = postprocess_packed_seqs(
        output.entropy, packed_seq_params, attention_mask, batch_size, seq_len, post_process=post_process
    )
    ret["log_probs"] = postprocess_packed_seqs(
        output.log_probs, packed_seq_params, attention_mask, batch_size, seq_len, post_process=post_process
    )
    return ret