registry.py 8.69 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2025 Bytedance Ltd. and/or its affiliates
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Registry module for model architecture components.
"""

from enum import Enum
from typing import Callable

import torch
import torch.nn as nn

from .config_converter import (
    PretrainedConfig,
    TransformerConfig,
    hf_to_mcore_config_dense,
    hf_to_mcore_config_dpskv3,
    hf_to_mcore_config_llama4,
    hf_to_mcore_config_mixtral,
    hf_to_mcore_config_qwen2_5_vl,
    hf_to_mcore_config_qwen2moe,
    hf_to_mcore_config_qwen3moe,
)
from .model_forward import (
    gptmodel_forward,
    gptmodel_forward_qwen2_5_vl,
)
from .model_forward_fused import (
    fused_forward_gptmodel,
    fused_forward_qwen2_5_vl,
)
from .model_initializer import (
    BaseModelInitializer,
    DeepseekV3Model,
    DenseModel,
    MixtralModel,
    Qwen2MoEModel,
    Qwen3MoEModel,
    Qwen25VLModel,
)
from .weight_converter import (
    McoreToHFWeightConverterDense,
    McoreToHFWeightConverterDpskv3,
    McoreToHFWeightConverterMixtral,
    McoreToHFWeightConverterQwen2_5_VL,
    McoreToHFWeightConverterQwen2Moe,
    McoreToHFWeightConverterQwen3Moe,
)


class SupportedModel(Enum):
    LLAMA = "LlamaForCausalLM"  # tested
    QWEN2 = "Qwen2ForCausalLM"  # tested
    QWEN2_MOE = "Qwen2MoeForCausalLM"  # pending
    DEEPSEEK_V3 = "DeepseekV3ForCausalLM"  # not tested
    MIXTRAL = "MixtralForCausalLM"  # tested
    QWEN2_5_VL = "Qwen2_5_VLForConditionalGeneration"  # not supported
    LLAMA4 = "Llama4ForConditionalGeneration"  # not tested
    QWEN3 = "Qwen3ForCausalLM"  # tested
    QWEN3_MOE = "Qwen3MoeForCausalLM"  # not tested


# Registry for model configuration converters
MODEL_CONFIG_CONVERTER_REGISTRY: dict[SupportedModel, Callable[[PretrainedConfig, torch.dtype], TransformerConfig]] = {
    SupportedModel.LLAMA: hf_to_mcore_config_dense,
    SupportedModel.QWEN2: hf_to_mcore_config_dense,
    SupportedModel.QWEN2_MOE: hf_to_mcore_config_qwen2moe,
    SupportedModel.DEEPSEEK_V3: hf_to_mcore_config_dpskv3,
    SupportedModel.MIXTRAL: hf_to_mcore_config_mixtral,
    SupportedModel.QWEN2_5_VL: hf_to_mcore_config_qwen2_5_vl,
    SupportedModel.LLAMA4: hf_to_mcore_config_llama4,
    SupportedModel.QWEN3: hf_to_mcore_config_dense,
    SupportedModel.QWEN3_MOE: hf_to_mcore_config_qwen3moe,
    SupportedModel.QWEN2_5_VL: hf_to_mcore_config_qwen2_5_vl,
}

# Registry for model initializers
MODEL_INITIALIZER_REGISTRY: dict[SupportedModel, type[BaseModelInitializer]] = {
    SupportedModel.LLAMA: DenseModel,
    SupportedModel.QWEN2: DenseModel,
    SupportedModel.QWEN2_MOE: Qwen2MoEModel,
    SupportedModel.MIXTRAL: MixtralModel,
    SupportedModel.DEEPSEEK_V3: DeepseekV3Model,
    SupportedModel.QWEN2_5_VL: Qwen25VLModel,
    SupportedModel.LLAMA4: DenseModel,
    SupportedModel.QWEN3: DenseModel,
    SupportedModel.QWEN3_MOE: Qwen3MoEModel,
    SupportedModel.QWEN2_5_VL: Qwen25VLModel,
}

# Registry for model forward functions
MODEL_FORWARD_REGISTRY: dict[SupportedModel, Callable] = {
    SupportedModel.LLAMA: gptmodel_forward,
    SupportedModel.QWEN2: gptmodel_forward,
    SupportedModel.QWEN2_MOE: gptmodel_forward,
    SupportedModel.MIXTRAL: gptmodel_forward,
    SupportedModel.DEEPSEEK_V3: gptmodel_forward,
    SupportedModel.QWEN2_5_VL: gptmodel_forward,
    SupportedModel.LLAMA4: gptmodel_forward,
    SupportedModel.QWEN3: gptmodel_forward,
    SupportedModel.QWEN3_MOE: gptmodel_forward,
    SupportedModel.QWEN2_5_VL: gptmodel_forward_qwen2_5_vl,
    SupportedModel.DEEPSEEK_V3: gptmodel_forward,
}

# Registry for model forward functions
MODEL_FORWARD_FUSED_REGISTRY: dict[SupportedModel, Callable] = {
    SupportedModel.LLAMA: fused_forward_gptmodel,
    SupportedModel.QWEN2: fused_forward_gptmodel,
    SupportedModel.QWEN2_MOE: fused_forward_gptmodel,
    SupportedModel.MIXTRAL: fused_forward_gptmodel,
    SupportedModel.DEEPSEEK_V3: fused_forward_gptmodel,
    SupportedModel.QWEN2_5_VL: fused_forward_qwen2_5_vl,
    SupportedModel.LLAMA4: fused_forward_gptmodel,
    SupportedModel.QWEN3: fused_forward_gptmodel,
    SupportedModel.QWEN3_MOE: fused_forward_gptmodel,
    SupportedModel.QWEN2_5_VL: fused_forward_qwen2_5_vl,
    SupportedModel.DEEPSEEK_V3: fused_forward_gptmodel,
}

# Registry for model weight converters
MODEL_WEIGHT_CONVERTER_REGISTRY: dict[SupportedModel, type] = {
    SupportedModel.LLAMA: McoreToHFWeightConverterDense,
    SupportedModel.QWEN2: McoreToHFWeightConverterDense,
    SupportedModel.QWEN2_MOE: McoreToHFWeightConverterQwen2Moe,
    SupportedModel.MIXTRAL: McoreToHFWeightConverterMixtral,
    SupportedModel.DEEPSEEK_V3: McoreToHFWeightConverterDpskv3,
    SupportedModel.QWEN3: McoreToHFWeightConverterDense,
    SupportedModel.QWEN3_MOE: McoreToHFWeightConverterQwen3Moe,
    SupportedModel.QWEN2_5_VL: McoreToHFWeightConverterQwen2_5_VL,
}


def get_supported_model(model_type: str) -> SupportedModel:
    try:
        return SupportedModel(model_type)
    except ValueError as err:
        supported_models = [e.value for e in SupportedModel]
        raise NotImplementedError(
            f"Model Type: {model_type} not supported. Supported models: {supported_models}"
        ) from err


def hf_to_mcore_config(
    hf_config: PretrainedConfig, dtype: torch.dtype, **override_transformer_config_kwargs
) -> TransformerConfig:
    """Convert huggingface PretrainedConfig to mcore TransformerConfig.

    Args:
        hf_config: The huggingface PretrainedConfig.
        dtype: The dtype of the model.
        **override_transformer_config_kwargs: The kwargs to override the transformer config.

    Returns:
        The mcore TransformerConfig.
    """
    assert len(hf_config.architectures) == 1, "Only one architecture is supported for now"
    model = get_supported_model(hf_config.architectures[0])
    return MODEL_CONFIG_CONVERTER_REGISTRY[model](hf_config, dtype, **override_transformer_config_kwargs)


def init_mcore_model(
    tfconfig: TransformerConfig,
    hf_config: PretrainedConfig,
    pre_process: bool = True,
    post_process: bool = None,
    *,
    share_embeddings_and_output_weights: bool = False,
    value: bool = False,
    **extra_kwargs,  # may be used for vlm and moe
) -> nn.Module:
    """
    Initialize a Mcore model.

    Args:
        tfconfig: The transformer config.
        hf_config: The HuggingFace config.
        pre_process: Optional pre-processing function.
        post_process: Optional post-processing function.
        share_embeddings_and_output_weights: Whether to share embeddings and output weights.
        value: Whether to use value.
        **extra_kwargs: Additional keyword arguments.

    Returns:
        The initialized model.
    """
    assert len(hf_config.architectures) == 1, "Only one architecture is supported for now"
    model = get_supported_model(hf_config.architectures[0])
    initializer_cls = MODEL_INITIALIZER_REGISTRY[model]
    initializer = initializer_cls(tfconfig, hf_config)
    return initializer.initialize(
        pre_process=pre_process,
        post_process=post_process,
        share_embeddings_and_output_weights=share_embeddings_and_output_weights,
        value=value,
        **extra_kwargs,
    )


def get_mcore_forward_fn(hf_config: PretrainedConfig) -> Callable:
    """
    Get the forward function for given model architecture.
    """
    assert len(hf_config.architectures) == 1, "Only one architecture is supported for now"
    model = get_supported_model(hf_config.architectures[0])
    return MODEL_FORWARD_REGISTRY[model]


def get_mcore_forward_fused_fn(hf_config: PretrainedConfig) -> Callable:
    """
    Get the forward function for given model architecture.
    """
    assert len(hf_config.architectures) == 1, "Only one architecture is supported for now"
    model = get_supported_model(hf_config.architectures[0])
    return MODEL_FORWARD_FUSED_REGISTRY[model]


def get_mcore_weight_converter(hf_config: PretrainedConfig, dtype: torch.dtype) -> Callable:
    """
    Get the weight converter for given model architecture.
    """
    assert len(hf_config.architectures) == 1, "Only one architecture is supported for now"
    model = get_supported_model(hf_config.architectures[0])
    tfconfig = hf_to_mcore_config(hf_config, dtype)
    return MODEL_WEIGHT_CONVERTER_REGISTRY[model](hf_config, tfconfig)