fsdp_model_merger.py 10.6 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path

import numpy as np
import torch
from torch.distributed._tensor import Placement, Shard

try:
    # for torch 2.5+
    from torch.distributed.tensor import DTensor
except ImportError:
    from torch.distributed._tensor import DTensor

from tqdm import tqdm

from .base_model_merger import BaseModelMerger


class FSDPModelMerger(BaseModelMerger):
    """
    Model merger for FSDP (Fully Sharded Data Parallel) checkpoints.

    This class handles the conversion of FSDP distributed checkpoints into HuggingFace format.
    FSDP shards model parameters across multiple processes, and this merger reconstructs
    the full model by loading and concatenating the sharded parameters from all ranks.

    The merger supports various FSDP configurations including:
    - Pure FSDP (single dimension sharding)
    - FSDP + DDP (data parallel + fully sharded data parallel)
    - DTensor-based sharding with custom device meshes

    Key features:
    - Automatic detection of world size from checkpoint filenames
    - Support for DTensor and non-DTensor checkpoints
    - Parallel loading of checkpoint shards for efficiency
    - Validation against reference HuggingFace models

    Example:
        To merge FSDP checkpoints:
        ```python
        config = ModelMergerConfig(
            operation="merge",
            backend="fsdp",
            local_dir="path/to/fsdp/checkpoints",
            target_dir="path/to/output"
        )
        merger = FSDPModelMerger(config)
        merger.merge_and_save()
        ```
    """

    def _get_world_size(self) -> int:
        """_summary_
        From FSDP json config file, extract the world size.

        Returns:
            int: world size
        """
        config_path = Path(self.config.local_dir) / "fsdp_config.json"
        if not config_path.exists():
            raise FileNotFoundError(f"Config file {config_path} does not exist.")

        with open(config_path) as f:
            config = json.load(f)

        # Extract world size from the config
        world_size = config.get("world_size", None)
        if world_size is None:
            raise ValueError("World size not found in the config file.")

        return world_size

    def _load_rank_zero_state_dict(self, world_size: int) -> dict:
        return torch.load(
            Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_0.pt",
            map_location="cpu",
            weights_only=False,
        )

    def _extract_device_mesh_info(self, state_dict: dict, world_size: int) -> tuple[np.ndarray, tuple[str, ...]]:
        """
        Retrieves sharding information (device_mesh, mesh_dim_names) from a DTensor in the state_dict.
        If no DTensor is found, infers a simple FSDP mesh based on world_size.
        """
        pivot_key = sorted(list(state_dict.keys()))[0]
        weight = state_dict[pivot_key]

        if isinstance(weight, DTensor):
            # get sharding info
            device_mesh = weight.device_mesh
            mesh = device_mesh.mesh
            mesh_dim_names = device_mesh.mesh_dim_names
        else:
            # for non-DTensor
            mesh = np.array([world_size], dtype=np.int64)
            mesh_dim_names = ("fsdp",)

        return mesh, mesh_dim_names

    def _calculate_shard_configuration(
        self, mesh: np.ndarray, mesh_dim_names: tuple[str, ...]
    ) -> tuple[int, tuple[int, ...]]:
        """Calculates the total number of shards and the shape of the device mesh."""
        assert mesh_dim_names in (("fsdp",), ("ddp", "fsdp")), f"Unsupported mesh_dim_names {mesh_dim_names}"

        if "tp" in mesh_dim_names:
            # TODO: "tp" is not supported yet due to the above assert
            total_shards = mesh.shape[-1] * mesh.shape[-2]
            mesh_shape = (mesh.shape[-2], mesh.shape[-1])
        else:
            total_shards = mesh.shape[-1]
            mesh_shape = (mesh.shape[-1],)

        return total_shards, mesh_shape

    def _merge_by_placement(self, tensors: list[torch.Tensor], placement: Placement) -> torch.Tensor:
        """Merges a list of tensors based on their DTensor placement"""
        if placement.is_replicate():
            return tensors[0]
        elif placement.is_partial():
            raise NotImplementedError("Partial placement is not supported yet")
        elif placement.is_shard():
            return torch.cat(tensors, dim=placement.dim).contiguous()

        raise NotImplementedError(f"Unsupported placement: {placement}")

    def _load_and_merge_state_dicts(
        self, world_size: int, total_shards: int, mesh_shape: tuple[int, ...], mesh_dim_names: tuple[str, ...]
    ) -> dict[str, torch.Tensor]:
        model_state_dict_lst = [None] * total_shards

        def process_one_shard(rank: int, model_state_dict_lst: list):
            model_path = Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_{rank}.pt"
            state_dict = torch.load(model_path, map_location="cpu", weights_only=False)
            model_state_dict_lst[rank] = state_dict
            return state_dict

        with ThreadPoolExecutor(max_workers=min(32, os.cpu_count())) as executor:
            futures = [executor.submit(process_one_shard, rank, model_state_dict_lst) for rank in range(total_shards)]
            for future in tqdm(futures, desc=f"Loading {total_shards} FSDP shards", total=total_shards):
                future.result()

        # Merge state dicts from all shards
        state_dict = {}
        param_placements: dict[str, list] = {}

        for key in set(model_state_dict_lst[0].keys()):
            state_dict[key] = []
            for model_state_shard in model_state_dict_lst:
                # add tensor shard in order of rank to state_dict[key]
                tensor = model_state_shard.pop(key)
                if isinstance(tensor, DTensor):
                    state_dict[key].append(tensor._local_tensor.bfloat16())

                    placements = tuple(tensor.placements)
                    # replicated placement at dp dimension can be discarded
                    if mesh_dim_names[0] in ("dp", "ddp"):
                        placements = placements[1:]

                    if key not in param_placements:
                        param_placements[key] = placements
                    else:
                        assert param_placements[key] == placements
                else:
                    state_dict[key].append(tensor.bfloat16())

        del model_state_dict_lst

        # Merge tensors
        for key in sorted(state_dict):
            if not isinstance(state_dict[key], list):
                print(f"No need to merge key {key}")
                continue
            if key in param_placements:
                # merge shards
                placements: tuple[Shard] = param_placements[key]
                if len(mesh_shape) == 1:
                    # 1-D list, FSDP without TP
                    assert len(placements) == 1
                    shards = state_dict[key]
                    state_dict[key] = self._merge_by_placement(shards, placements[0])
                else:
                    # 2-D list, FSDP + TP
                    raise NotImplementedError("FSDP + TP is not supported yet")
            else:
                state_dict[key] = torch.cat(state_dict[key], dim=0)

        return state_dict

    def merge_and_save(self):
        world_size = self._get_world_size()
        rank_zero_state_dict = self._load_rank_zero_state_dict(world_size)

        mesh, mesh_dim_names = self._extract_device_mesh_info(rank_zero_state_dict, world_size)
        print(f"Got device mesh {mesh}, mesh_dim_names {mesh_dim_names}")

        total_shards, mesh_shape = self._calculate_shard_configuration(mesh, mesh_dim_names)
        print(f"Processing model shards with {total_shards} {mesh_shape} in total")

        merged_state_dict = self._load_and_merge_state_dicts(world_size, total_shards, mesh_shape, mesh_dim_names)

        if self.config.operation == "test":
            if not self.config.test_hf_dir:
                raise ValueError("test_hf_dir must be provided for test operation")
            self._validate_state_dict(merged_state_dict)
        elif self.config.operation == "merge":
            self.save_hf_model_and_tokenizer(merged_state_dict)
            if self.config.hf_upload:
                self.upload_to_huggingface()
        else:
            raise ValueError(f"Unknown operation: {self.config.operation}")

    def _validate_state_dict(self, state_dict: dict[str, torch.Tensor]):
        auto_model_class = self.get_transformers_auto_model_class()

        hf_model = auto_model_class.from_pretrained(self.config.test_hf_dir, torch_dtype=torch.bfloat16)
        hf_state_dict = hf_model.state_dict()
        del hf_model

        hf_model_keys = set(hf_state_dict.keys())
        collected_keys = set(state_dict.keys())

        missing_keys = hf_model_keys - collected_keys
        assert len(missing_keys) == 0, f"Missing keys in collected state dict: {list(sorted(missing_keys))}"

        extra_keys = collected_keys - hf_model_keys
        assert len(extra_keys) == 0, f"Extra keys in collected state dict: {list(sorted(extra_keys))}"

        for key in hf_model_keys:
            hf_shape = hf_state_dict[key].shape
            collected_shape = state_dict[key].shape
            assert hf_shape == collected_shape, (
                f"Shape mismatch for key '{key}': original {hf_shape} vs collected {collected_shape}"
            )

            hf_dtype = hf_state_dict[key].dtype
            collected_dtype = state_dict[key].dtype
            assert hf_dtype == collected_dtype, (
                f"Dtype mismatch for key '{key}': original {hf_dtype} vs collected {collected_dtype}"
            )

            torch.testing.assert_close(hf_state_dict[key], state_dict[key], atol=1e-6, rtol=1e-6)

        print("FSDP checks passed: The merged state_dict matches the hf model saved by FSDPCheckpointManager.")

    def cleanup(self):
        """Cleanup temporary files if needed."""
        # FSDP merger does not create temporary files, so no cleanup is needed.
        pass