"docs/zh/FAQ/index.md" did not exist on "91f8cbe25a0896168a5a9ae2245144b02d588083"
tool_agent_loop.py 7.11 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import json
import logging
import os
from typing import Any
from uuid import uuid4

from verl.experimental.agent_loop.agent_loop import AgentLoopBase, AgentLoopOutput, register
from verl.experimental.agent_loop.tool_parser import FunctionCall, ToolParser
from verl.tools.utils.tool_registry import initialize_tools_from_config
from verl.utils.profiler import simple_timer
from verl.utils.rollout_trace import rollout_trace_op

logger = logging.getLogger(__file__)
logger.setLevel(os.getenv("VERL_LOGGING_LEVEL", "WARN"))


@register("tool_agent")
class ToolAgentLoop(AgentLoopBase):
    @classmethod
    def init_class(cls, config, tokenizer, **kwargs):
        if cls._class_initialized:
            return
        cls._class_initialized = True
        print("Performing class-level ToolAgentLoop initialization")

        # Initialize tools from config file
        cls.tokenizer = tokenizer
        cls.max_user_turns = config.actor_rollout_ref.rollout.multi_turn.max_user_turns
        cls.max_assistant_turns = config.actor_rollout_ref.rollout.multi_turn.max_assistant_turns
        cls.max_parallel_calls = config.actor_rollout_ref.rollout.multi_turn.max_parallel_calls
        cls.max_tool_response_length = config.actor_rollout_ref.rollout.multi_turn.max_tool_response_length
        cls.tool_response_truncate_side = config.actor_rollout_ref.rollout.multi_turn.tool_response_truncate_side
        tool_config_path = config.actor_rollout_ref.rollout.multi_turn.tool_config_path
        tool_list = initialize_tools_from_config(tool_config_path) if tool_config_path else []
        cls.tools = {tool.name: tool for tool in tool_list}
        cls.tool_schemas = [tool.tool_schema.model_dump(exclude_unset=True, exclude_none=True) for tool in tool_list]
        cls.tool_parser = ToolParser.get_tool_parser(config.actor_rollout_ref.rollout.multi_turn.format, cls.tokenizer)
        print(f"Initialized tools: {cls.tools}")

        cls.prompt_length = config.actor_rollout_ref.rollout.prompt_length
        cls.response_length = config.actor_rollout_ref.rollout.response_length
        cls.system_prompt = tokenizer.apply_chat_template([{}], add_generation_prompt=False, tokenize=True)

    @rollout_trace_op
    async def run(self, messages: list[dict[str, Any]], sampling_params: dict[str, Any]) -> AgentLoopOutput:
        metrics = {}
        request_id = uuid4().hex
        prompt_ids = await self.loop.run_in_executor(
            None,
            lambda: self.tokenizer.apply_chat_template(
                messages, tools=self.tool_schemas, add_generation_prompt=True, tokenize=True
            ),
        )
        response_mask = []

        user_turns, assistant_turns = 0, 0
        while True:
            with simple_timer("generate_sequences", metrics):
                response_ids = await self.server_manager.generate(
                    request_id=request_id, prompt_ids=prompt_ids, sampling_params=sampling_params
                )
            prompt_ids += response_ids
            response_mask += [1] * len(response_ids)
            assistant_turns += 1

            # reach max response length
            if len(response_mask) >= self.response_length:
                break

            # reach max assistant turns
            if self.max_assistant_turns and assistant_turns >= self.max_assistant_turns:
                break

            # reach max user turns
            if self.max_user_turns and user_turns >= self.max_user_turns:
                break

            # no tool calls
            _, tool_calls = await self.tool_parser.extract_tool_calls(response_ids)
            if not tool_calls:
                break

            # call tools
            tasks = []
            for tool_call in tool_calls[: self.max_parallel_calls]:
                tasks.append(self._call_tool(tool_call))
            with simple_timer("tool_calls", metrics):
                tool_responses = await asyncio.gather(*tasks)
            if any(isinstance(item, Exception) for item in tool_responses):
                break

            # append tool_response_ids
            tool_response_ids = await self.loop.run_in_executor(
                None,
                lambda messages=tool_responses: self.tokenizer.apply_chat_template(
                    messages, add_generation_prompt=True, tokenize=True
                ),
            )
            tool_response_ids = tool_response_ids[len(self.system_prompt) :]

            # NOTE: last turn should not be user turn, or the EOS token reward
            # can't be propagated to previous token in GAE.
            if len(response_mask) + len(tool_response_ids) >= self.response_length:
                break

            prompt_ids += tool_response_ids
            response_mask += [0] * len(tool_response_ids)
            user_turns += 1

        response_ids = prompt_ids[-len(response_mask) :]
        prompt_ids = prompt_ids[: len(prompt_ids) - len(response_mask)]

        output = AgentLoopOutput(
            prompt_ids=prompt_ids,
            response_ids=response_ids[: self.response_length],
            response_mask=response_mask[: self.response_length],
            num_turns=user_turns + assistant_turns + 1,
            metrics=metrics,
        )
        return output

    async def _call_tool(self, tool_call: FunctionCall) -> dict[str, str]:
        """Call tool and return tool response."""
        tool, instance_id = None, None
        try:
            # TODO: append malformed tool_call to the prompt: invalid function name or arguments
            tool_name = tool_call.name
            tool_args = json.loads(tool_call.arguments)
            tool = self.tools[tool_name]

            instance_id = await tool.create()
            tool_response, _, _ = await tool.execute(instance_id, tool_args)
        except Exception as e:
            logger.exception(f"Error when executing tool: {e}")
            return e
        finally:
            if tool and instance_id:
                await tool.release(instance_id)

        if len(tool_response) > self.max_tool_response_length:
            if self.tool_response_truncate_side == "left":
                tool_response = tool_response[: self.max_tool_response_length] + "...(truncated)"
            elif self.tool_response_truncate_side == "right":
                tool_response = "(truncated)..." + tool_response[-self.max_tool_response_length :]
            else:
                length = self.max_tool_response_length // 2
                tool_response = tool_response[:length] + "...(truncated)..." + tool_response[-length:]

        return {
            "role": "tool",
            "content": tool_response,
        }