test_protocol_on_cpu.py 26 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

import numpy as np
import pytest
import torch
from tensordict import TensorDict

from verl import DataProto
from verl.protocol import union_numpy_dict, union_tensor_dict


def test_union_tensor_dict():
    obs = torch.randn(100, 10)

    data1 = TensorDict({"obs": obs, "act": torch.randn(100, 3)}, batch_size=[100])
    data2 = TensorDict({"obs": obs, "next_obs": torch.randn(100, 10), "rew": torch.randn(100)}, batch_size=[100])

    data_with_copied_obs = TensorDict(
        {"obs": obs.clone(), "next_obs": torch.randn(100, 10), "rew": torch.randn(100)}, batch_size=[100]
    )

    union_tensor_dict(data1, data2)
    with pytest.raises(AssertionError):
        union_tensor_dict(data1, data_with_copied_obs)


def test_union_numpy_dict():
    """
    A comprehensive test suite for union_numpy_dict, covering standard use
    cases, N-dimensional arrays, object-dtype arrays, and NaN value handling.
    """
    arr_3d = np.arange(8).reshape((2, 2, 2))
    union_numpy_dict({"a": arr_3d}, {"a": arr_3d})
    arr1 = np.array([1, "hello", np.array([2, 3])], dtype=object)
    arr2 = np.array([1, "hello", np.array([2, 3])], dtype=object)
    union_numpy_dict({"a": arr1}, {"a": arr2})
    # --- Test Case 1: The original test with mixed object/float types ---
    # This test case from the original test file is preserved.
    data = np.random.random(100)
    # This array intentionally mixes float('nan') and the string 'nan'
    nan_data = [float("nan") for _ in range(99)]
    nan_data.append("nan")
    nan_data_arr = np.array(nan_data, dtype=object)

    dict1 = {"a": data, "b": nan_data_arr}
    dict2_same = {"a": data.copy(), "b": nan_data_arr.copy()}
    dict3_different = {"a": np.random.random(100)}

    union_numpy_dict(dict1, dict2_same)  # Should pass
    with pytest.raises(AssertionError):
        union_numpy_dict(dict1, dict3_different)

    # --- Test Case 2: Standard 3D arrays (fixes the core bug) ---
    arr_3d = np.arange(24, dtype=np.int32).reshape((2, 3, 4))
    dict_3d_1 = {"nd_array": arr_3d}
    dict_3d_2_same = {"nd_array": arr_3d.copy()}
    dict_3d_3_different = {"nd_array": arr_3d + 1}

    union_numpy_dict(dict_3d_1, dict_3d_2_same)  # Should pass
    with pytest.raises(AssertionError, match="`nd_array` in tensor_dict1 and tensor_dict2 are not the same object."):
        union_numpy_dict(dict_3d_1, dict_3d_3_different)

    # --- Test Case 3: Nested 2D and 4D object-dtype arrays ---
    sub_arr1 = np.array([1, 2])
    sub_arr2 = np.array([3.0, 4.0])
    # 2D object array
    arr_2d_obj = np.array([[sub_arr1, "text"], [sub_arr2, None]], dtype=object)
    arr_2d_obj_diff = np.array([[sub_arr1, "text"], [sub_arr2, "other"]], dtype=object)

    union_numpy_dict({"data": arr_2d_obj}, {"data": arr_2d_obj.copy()})  # Should pass
    with pytest.raises(AssertionError):
        union_numpy_dict({"data": arr_2d_obj}, {"data": arr_2d_obj_diff})

    # 4D object array to ensure deep recursion is robust
    arr_4d_obj = np.array([[[[sub_arr1]]], [[[sub_arr2]]]], dtype=object)
    arr_4d_obj_diff = np.array([[[[sub_arr1]]], [[[np.array([9, 9])]]]], dtype=object)

    union_numpy_dict({"data": arr_4d_obj}, {"data": arr_4d_obj.copy()})  # Should pass
    with pytest.raises(AssertionError):
        union_numpy_dict({"data": arr_4d_obj}, {"data": arr_4d_obj_diff})

    # --- Test Case 4: Explicit NaN value comparison ---
    # This verifies that our new _deep_equal logic correctly handles NaNs.
    nan_arr = np.array([1.0, np.nan, 3.0])
    dict_nan_1 = {"data": nan_arr}
    dict_nan_2_same = {"data": np.array([1.0, np.nan, 3.0])}  # A new array with same values
    dict_nan_3_different_val = {"data": np.array([1.0, 2.0, 3.0])}
    dict_nan_4_different_pos = {"data": np.array([np.nan, 1.0, 3.0])}

    # NaNs in the same position should be considered equal for merging.
    union_numpy_dict(dict_nan_1, dict_nan_2_same)  # Should pass

    with pytest.raises(AssertionError):
        union_numpy_dict(dict_nan_1, dict_nan_3_different_val)
    with pytest.raises(AssertionError):
        union_numpy_dict(dict_nan_1, dict_nan_4_different_pos)

    # --- Test Case 5: Circular reference handling ---
    # Create two separate, but structurally identical, circular references.
    # This should pass without a RecursionError.
    circ_arr_1 = np.array([None], dtype=object)
    circ_arr_1[0] = circ_arr_1

    circ_arr_2 = np.array([None], dtype=object)
    circ_arr_2[0] = circ_arr_2

    union_numpy_dict({"data": circ_arr_1}, {"data": circ_arr_2})  # Should pass

    # Create a circular reference and a non-circular one.
    # This should fail with an AssertionError because they are different.
    non_circ_arr = np.array([None], dtype=object)

    with pytest.raises(AssertionError):
        union_numpy_dict({"data": circ_arr_1}, {"data": non_circ_arr})


def test_tensor_dict_constructor():
    obs = torch.randn(100, 10)
    act = torch.randn(100, 10, 3)
    data = DataProto.from_dict(tensors={"obs": obs, "act": act})

    assert data.batch.batch_size == torch.Size([100])

    with pytest.raises(AssertionError):
        data = DataProto.from_dict(tensors={"obs": obs, "act": act}, num_batch_dims=2)

    with pytest.raises(AssertionError):
        data = DataProto.from_dict(tensors={"obs": obs, "act": act}, num_batch_dims=3)


def test_tensor_dict_make_iterator():
    obs = torch.randn(100, 10)
    labels = [random.choice(["abc", "cde"]) for _ in range(100)]
    dataset = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels})

    data_iter_1 = dataset.make_iterator(mini_batch_size=10, epochs=2, seed=1)
    data_list_1 = []
    for data in data_iter_1:
        data_list_1.append(data)

    data_iter_2 = dataset.make_iterator(mini_batch_size=10, epochs=2, seed=1)
    data_list_2 = []
    for data in data_iter_2:
        data_list_2.append(data)

    for data1, data2 in zip(data_list_1, data_list_2, strict=True):
        assert isinstance(data1, DataProto)
        assert isinstance(data2, DataProto)
        result = torch.all(torch.eq(data1.batch["obs"], data2.batch["obs"]))
        if not result.item():
            print(data1.batch["obs"])
            print(data2.batch["obs"])
            raise AssertionError()
        non_tensor_result = np.all(np.equal(data1.non_tensor_batch["labels"], data2.non_tensor_batch["labels"]))
        if not non_tensor_result.item():
            print(data1.non_tensor_batch["labels"])
            print(data2.non_tensor_batch["labels"])


def test_reorder():
    obs = torch.tensor([1, 2, 3, 4, 5, 6])
    labels = ["a", "b", "c", "d", "e", "f"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"name": "abdce"})
    data.reorder(torch.tensor([3, 4, 2, 0, 1, 5]))

    assert torch.all(torch.eq(data.batch["obs"], torch.tensor([4, 5, 3, 1, 2, 6])))
    assert np.all(data.non_tensor_batch["labels"] == np.array(["d", "e", "c", "a", "b", "f"]))
    assert data.meta_info == {"name": "abdce"}


def test_chunk_concat():
    obs = torch.tensor([1, 2, 3, 4, 5, 6])
    labels = ["a", "b", "c", "d", "e", "f"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"name": "abdce"})

    with pytest.raises(AssertionError):
        data.chunk(5)

    data_split = data.chunk(2)
    assert len(data_split) == 2
    assert torch.all(torch.eq(data_split[0].batch["obs"], torch.tensor([1, 2, 3])))
    assert np.all(data_split[0].non_tensor_batch["labels"] == np.array(["a", "b", "c"]))
    assert data_split[0].meta_info == {"name": "abdce"}

    assert torch.all(torch.eq(data_split[1].batch["obs"], torch.tensor([4, 5, 6])))
    assert np.all(data_split[1].non_tensor_batch["labels"] == np.array(["d", "e", "f"]))
    assert data_split[1].meta_info == {"name": "abdce"}

    concat_data = DataProto.concat(data_split)
    assert torch.all(torch.eq(concat_data.batch["obs"], data.batch["obs"]))
    assert np.all(concat_data.non_tensor_batch["labels"] == data.non_tensor_batch["labels"])
    assert concat_data.meta_info == data.meta_info


def test_pop():
    obs = torch.randn(100, 10)
    act = torch.randn(100, 3)
    dataset = DataProto.from_dict({"obs": obs, "act": act}, meta_info={"2": 2, "1": 1})
    poped_dataset = dataset.pop(batch_keys=["obs"], meta_info_keys=["2"])

    assert poped_dataset.batch.keys() == {"obs"}
    assert poped_dataset.meta_info.keys() == {"2"}

    assert dataset.batch.keys() == {"act"}
    assert dataset.meta_info.keys() == {"1"}


def test_repeat():
    # Create a DataProto object with some batch and non-tensor data
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})

    # Test interleave=True
    repeated_data_interleave = data.repeat(repeat_times=2, interleave=True)
    expected_obs_interleave = torch.tensor([[1, 2], [1, 2], [3, 4], [3, 4], [5, 6], [5, 6]])
    expected_labels_interleave = ["a", "a", "b", "b", "c", "c"]

    assert torch.all(torch.eq(repeated_data_interleave.batch["obs"], expected_obs_interleave))
    assert (repeated_data_interleave.non_tensor_batch["labels"] == expected_labels_interleave).all()
    assert repeated_data_interleave.meta_info == {"info": "test_info"}

    # Test interleave=False
    repeated_data_no_interleave = data.repeat(repeat_times=2, interleave=False)
    expected_obs_no_interleave = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2], [3, 4], [5, 6]])
    expected_labels_no_interleave = ["a", "b", "c", "a", "b", "c"]

    assert torch.all(torch.eq(repeated_data_no_interleave.batch["obs"], expected_obs_no_interleave))
    assert (repeated_data_no_interleave.non_tensor_batch["labels"] == expected_labels_no_interleave).all()
    assert repeated_data_no_interleave.meta_info == {"info": "test_info"}


def test_dataproto_pad_unpad():
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})

    from verl.protocol import pad_dataproto_to_divisor, unpad_dataproto

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=2)
    assert pad_size == 1

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2]])
    expected_labels = ["a", "b", "c", "a"]

    assert torch.all(torch.eq(padded_data.batch["obs"], expected_obs))
    assert (padded_data.non_tensor_batch["labels"] == expected_labels).all()
    assert padded_data.meta_info == {"info": "test_info"}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch["obs"], obs))
    assert (unpadd_data.non_tensor_batch["labels"] == labels).all()
    assert unpadd_data.meta_info == {"info": "test_info"}

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=3)
    assert pad_size == 0

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    expected_labels = ["a", "b", "c"]

    assert torch.all(torch.eq(padded_data.batch["obs"], expected_obs))
    assert (padded_data.non_tensor_batch["labels"] == expected_labels).all()
    assert padded_data.meta_info == {"info": "test_info"}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch["obs"], obs))
    assert (unpadd_data.non_tensor_batch["labels"] == labels).all()
    assert unpadd_data.meta_info == {"info": "test_info"}

    padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=7)
    assert pad_size == 4

    expected_obs = torch.tensor([[1, 2], [3, 4], [5, 6], [1, 2], [3, 4], [5, 6], [1, 2]])
    expected_labels = ["a", "b", "c", "a", "b", "c", "a"]
    assert torch.all(torch.eq(padded_data.batch["obs"], expected_obs))
    assert (padded_data.non_tensor_batch["labels"] == expected_labels).all()
    assert padded_data.meta_info == {"info": "test_info"}

    unpadd_data = unpad_dataproto(padded_data, pad_size=pad_size)
    assert torch.all(torch.eq(unpadd_data.batch["obs"], obs))
    assert (unpadd_data.non_tensor_batch["labels"] == labels).all()
    assert unpadd_data.meta_info == {"info": "test_info"}


def test_dataproto_fold_unfold():
    from verl.protocol import DataProto, fold_batch_dim, unfold_batch_dim

    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})

    data1 = data.repeat(repeat_times=2, interleave=True)

    data2 = fold_batch_dim(data1, new_batch_size=3)

    torch.testing.assert_close(data2.batch["obs"], torch.tensor([[[1, 2], [1, 2]], [[3, 4], [3, 4]], [[5, 6], [5, 6]]]))
    assert (data2.non_tensor_batch["labels"] == [["a", "a"], ["b", "b"], ["c", "c"]]).all()

    data2.reorder(indices=torch.tensor([1, 2, 0]))

    data3 = unfold_batch_dim(data2, batch_dims=2)

    torch.testing.assert_close(data3.batch["obs"], torch.tensor([[3, 4], [3, 4], [5, 6], [5, 6], [1, 2], [1, 2]]))
    assert (data3.non_tensor_batch["labels"] == ["b", "b", "c", "c", "a", "a"]).all()
    assert data3.meta_info == {"info": "test_info"}


def test_torch_save_data_proto():
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})
    data.save_to_disk("test_data.pt")
    loaded_data = DataProto.load_from_disk("test_data.pt")

    assert torch.all(torch.eq(loaded_data.batch["obs"], data.batch["obs"]))
    assert (loaded_data.non_tensor_batch["labels"] == data.non_tensor_batch["labels"]).all()
    assert loaded_data.meta_info == data.meta_info

    import os

    os.remove("test_data.pt")


def test_len():
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = np.array(["a", "b", "c"], dtype=object)
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})

    assert len(data) == 3

    data = DataProto(batch=None, non_tensor_batch={"labels": labels}, meta_info={"info": "test_info"})

    assert len(data) == 3

    data = DataProto(batch=None, non_tensor_batch={}, meta_info={"info": "test_info"})

    assert len(data) == 0

    data = DataProto(batch=None, non_tensor_batch=None, meta_info={"info": "test_info"})

    assert len(data) == 0


def test_dataproto_index():
    data_len = 100
    idx_num = 10

    obs = torch.randn(data_len, 10)
    labels = [random.choice(["abc", "cde"]) for _ in range(data_len)]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels})
    labels_np = np.array(labels)

    idx_np_int = np.random.randint(0, data_len, size=(idx_num,))
    result_np_int = data[idx_np_int]
    assert result_np_int.batch.keys() == data.batch.keys()
    assert result_np_int.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_np_int.batch["obs"].shape[0] == idx_num
    assert result_np_int.non_tensor_batch["labels"].shape[0] == idx_num
    assert np.array_equal(result_np_int.batch["obs"].cpu().numpy(), obs[idx_np_int].numpy())
    assert np.array_equal(result_np_int.non_tensor_batch["labels"], labels_np[idx_np_int])

    idx_torch_int = torch.randint(0, data_len, size=(idx_num,))
    result_torch_int = data[idx_torch_int]
    assert result_torch_int.batch.keys() == data.batch.keys()
    assert result_torch_int.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_torch_int.batch["obs"].shape[0] == idx_num
    assert result_torch_int.non_tensor_batch["labels"].shape[0] == idx_num
    assert np.array_equal(result_torch_int.batch["obs"].cpu().numpy(), obs[idx_torch_int].cpu().numpy())
    assert np.array_equal(result_torch_int.non_tensor_batch["labels"], labels_np[idx_torch_int.cpu().numpy()])

    idx_list_int = [np.random.randint(0, data_len) for _ in range(idx_num)]
    result_list_int = data[idx_list_int]
    assert result_list_int.batch.keys() == data.batch.keys()
    assert result_list_int.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_list_int.batch["obs"].shape[0] == idx_num
    assert result_list_int.non_tensor_batch["labels"].shape[0] == idx_num
    assert np.array_equal(result_list_int.batch["obs"].cpu().numpy(), obs[idx_list_int].cpu().numpy())
    assert np.array_equal(result_list_int.non_tensor_batch["labels"], labels_np[idx_list_int])

    idx_np_bool = np.random.randint(0, 2, size=(data_len,), dtype=bool)
    result_np_bool = data[idx_np_bool]
    assert result_np_bool.batch.keys() == data.batch.keys()
    assert result_np_bool.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_np_bool.batch["obs"].shape[0] == idx_np_bool.sum()
    assert result_np_bool.non_tensor_batch["labels"].shape[0] == idx_np_bool.sum()
    assert np.array_equal(result_np_bool.batch["obs"].cpu().numpy(), obs[idx_np_bool].cpu().numpy())
    assert np.array_equal(result_np_bool.non_tensor_batch["labels"], labels_np[idx_np_bool])

    idx_torch_bool = torch.randint(0, 2, size=(data_len,), dtype=torch.bool)
    result_torch_bool = data[idx_torch_bool]
    assert result_torch_bool.batch.keys() == data.batch.keys()
    assert result_torch_bool.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_torch_bool.batch["obs"].shape[0] == idx_torch_bool.sum().item()
    assert result_torch_bool.non_tensor_batch["labels"].shape[0] == idx_torch_bool.sum().item()
    assert np.array_equal(result_torch_bool.batch["obs"].cpu().numpy(), obs[idx_torch_bool].cpu().numpy())
    assert np.array_equal(result_torch_bool.non_tensor_batch["labels"], labels_np[idx_torch_bool])

    idx_list_bool = [np.random.randint(0, 2, dtype=bool) for _ in range(data_len)]
    result_list_bool = data[idx_list_bool]
    assert result_list_bool.batch.keys() == data.batch.keys()
    assert result_list_bool.non_tensor_batch.keys() == data.non_tensor_batch.keys()
    assert result_list_bool.batch["obs"].shape[0] == sum(idx_list_bool)
    assert result_list_bool.non_tensor_batch["labels"].shape[0] == sum(idx_list_bool)
    assert np.array_equal(result_list_bool.batch["obs"].cpu().numpy(), obs[idx_list_bool].cpu().numpy())
    assert np.array_equal(result_list_bool.non_tensor_batch["labels"], labels_np[idx_list_bool])


def test_old_vs_new_from_single_dict():
    class CustomProto(DataProto):
        """Uses the new, fixed from_single_dict."""

        pass

    class OriginProto(DataProto):
        """Mimics the *old* from_single_dict (always returns a DataProto)."""

        @classmethod
        def from_single_dict(cls, data, meta_info=None, auto_padding=False):
            tensors, non_tensors = {}, {}
            for k, v in data.items():
                if torch.is_tensor(v):
                    tensors[k] = v
                else:
                    non_tensors[k] = v
            # always calls DataProto.from_dict, ignoring `cls`
            return DataProto.from_dict(
                tensors=tensors,
                non_tensors=non_tensors,
                meta_info=meta_info,
                auto_padding=auto_padding,
            )

    sample = {"x": torch.tensor([0])}

    orig = OriginProto.from_single_dict(sample)
    # old behavior: always DataProto, not a CustomOriginProto
    assert type(orig) is DataProto
    assert type(orig) is not OriginProto

    cust = CustomProto.from_single_dict(sample)
    # new behavior: respects subclass
    assert type(cust) is CustomProto


def test_dataproto_no_batch():
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(non_tensors={"labels": labels}, meta_info={"info": "test_info"})
    selected = data.select(non_tensor_batch_keys=["labels"])
    assert (selected.non_tensor_batch["labels"] == labels).all()
    pop_data = data.pop(non_tensor_batch_keys=["labels"])
    assert (pop_data.non_tensor_batch["labels"] == labels).all()
    assert data.non_tensor_batch == {}


def test_sample_level_repeat():
    # Create a DataProto object with some batch and non-tensor data
    obs = torch.tensor([[1, 2], [3, 4], [5, 6]])
    labels = ["a", "b", "c"]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"info": "test_info"})

    # list
    repeated_data_interleave = data.sample_level_repeat(repeat_times=[3, 1, 2])
    expected_obs_interleave = torch.tensor([[1, 2], [1, 2], [1, 2], [3, 4], [5, 6], [5, 6]])
    expected_labels_interleave = ["a", "a", "a", "b", "c", "c"]

    assert torch.all(torch.eq(repeated_data_interleave.batch["obs"], expected_obs_interleave))
    assert (repeated_data_interleave.non_tensor_batch["labels"] == expected_labels_interleave).all()
    assert repeated_data_interleave.meta_info == {"info": "test_info"}

    # torch.tensor
    repeated_data_no_interleave = data.sample_level_repeat(repeat_times=torch.tensor([1, 2, 3]))
    expected_obs_no_interleave = torch.tensor([[1, 2], [3, 4], [3, 4], [5, 6], [5, 6], [5, 6]])
    expected_labels_no_interleave = ["a", "b", "b", "c", "c", "c"]

    assert torch.all(torch.eq(repeated_data_no_interleave.batch["obs"], expected_obs_no_interleave))
    assert (repeated_data_no_interleave.non_tensor_batch["labels"] == expected_labels_no_interleave).all()
    assert repeated_data_no_interleave.meta_info == {"info": "test_info"}


def test_dataproto_unfold_column_chunks():
    obs1 = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
    obs2 = torch.tensor([[1, 2], [5, 6], [9, 10]])

    labels = ["a", "b", "c"]
    data = DataProto.from_dict(
        tensors={"obs1": obs1, "obs2": obs2}, non_tensors={"labels": labels}, meta_info={"name": "abc"}
    )
    ret = data.unfold_column_chunks(2, split_keys=["obs1"])

    expect_obs1 = torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
    expect_obs2 = torch.tensor([[1, 2], [1, 2], [5, 6], [5, 6], [9, 10], [9, 10]])
    expect_labels = ["a", "a", "b", "b", "c", "c"]
    assert torch.all(torch.eq(ret.batch["obs1"], expect_obs1))
    assert torch.all(torch.eq(ret.batch["obs2"], expect_obs2))
    assert (ret.non_tensor_batch["labels"] == expect_labels).all()
    assert ret.meta_info == {"name": "abc"}

    obs1 = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
    obs2 = torch.tensor([[1, 2], [5, 6], [9, 10]])

    labels = [["a1", "a2"], ["b1", "b2"], ["c1", "c2"]]
    data = DataProto.from_dict(
        tensors={"obs1": obs1, "obs2": obs2}, non_tensors={"labels": labels}, meta_info={"name": "abc"}
    )
    ret = data.unfold_column_chunks(2, split_keys=["obs1", "labels"])

    expect_obs1 = torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
    expect_obs2 = torch.tensor([[1, 2], [1, 2], [5, 6], [5, 6], [9, 10], [9, 10]])
    expect_labels = [["a1"], ["a2"], ["b1"], ["b2"], ["c1"], ["c2"]]
    assert torch.all(torch.eq(ret.batch["obs1"], expect_obs1))
    assert torch.all(torch.eq(ret.batch["obs2"], expect_obs2))
    assert (ret.non_tensor_batch["labels"] == expect_labels).all()
    assert ret.meta_info == {"name": "abc"}

    obs1 = torch.tensor(
        [[[1, 1], [2, 2], [3, 3], [4, 4]], [[5, 5], [6, 6], [7, 7], [8, 8]], [[9, 9], [10, 10], [11, 11], [12, 12]]]
    )
    obs2 = torch.tensor([[[1, 1], [2, 2]], [[5, 5], [6, 6]], [[9, 9], [10, 10]]])

    labels = ["a", "b", "c"]
    data = DataProto.from_dict(
        tensors={"obs1": obs1, "obs2": obs2}, non_tensors={"labels": labels}, meta_info={"name": "abc"}
    )
    ret = data.unfold_column_chunks(2, split_keys=["obs1"])

    expect_obs1 = torch.tensor(
        [
            [[1, 1], [2, 2]],
            [[3, 3], [4, 4]],
            [[5, 5], [6, 6]],
            [[7, 7], [8, 8]],
            [[9, 9], [10, 10]],
            [[11, 11], [12, 12]],
        ]
    )
    expect_obs2 = torch.tensor(
        [[[1, 1], [2, 2]], [[1, 1], [2, 2]], [[5, 5], [6, 6]], [[5, 5], [6, 6]], [[9, 9], [10, 10]], [[9, 9], [10, 10]]]
    )
    expect_labels = ["a", "a", "b", "b", "c", "c"]
    assert torch.all(torch.eq(ret.batch["obs1"], expect_obs1))
    assert torch.all(torch.eq(ret.batch["obs2"], expect_obs2))
    assert (ret.non_tensor_batch["labels"] == expect_labels).all()
    assert ret.meta_info == {"name": "abc"}


def test_dataproto_chunk_after_index():
    data_len = 4
    obs = torch.randn(data_len, 4)
    labels = [f"label_{i}" for i in range(data_len)]
    data = DataProto.from_dict(tensors={"obs": obs}, non_tensors={"labels": labels}, meta_info={"name": "abc"})

    # Test with boolean numpy array
    bool_mask = np.array([True, False, True, False])
    selected = data[bool_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)  # int or List[int]

    # Test with integer numpy array
    int_mask = np.array([0, 2])
    selected = data[int_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)

    # Test with boolean list
    list_mask = [True, False, True, False]
    selected = data[list_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)

    # Test with list
    list_mask = [0, 2]
    selected = data[list_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)

    # Test with torch tensor (bool)
    torch_bool_mask = torch.tensor([True, False, True, False])
    selected = data[torch_bool_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)

    # Test with torch tensor (int)
    torch_int_mask = torch.tensor([0, 2])
    selected = data[torch_int_mask]
    assert isinstance(selected.batch.batch_size, torch.Size)
    assert all(isinstance(d, int) for d in selected.batch.batch_size)