test_fsdp_ckpt.py 5.07 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile

import torch
import torch.distributed
from torch.distributed import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config

from verl.utils.checkpoint.fsdp_checkpoint_manager import FSDPCheckpointManager
from verl.utils.distributed import initialize_global_process_group
from verl.utils.fsdp_utils import MixedPrecisionPolicy, apply_fsdp2


def test_fsdp_ckpt(strategy="fsdp"):
    assert torch.cuda.device_count() >= 2, "need at least 2 gpus for test"
    local_rank, rank, world_size = initialize_global_process_group()
    device_mesh = init_device_mesh("cuda", mesh_shape=(world_size,), mesh_dim_names=("dp",))

    model_name = "Qwen/Qwen2.5-0.5B-Instruct"
    config = Qwen2Config(num_hidden_layers=1)

    with torch.device("cuda"):
        model = AutoModelForCausalLM.from_config(
            config=config, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
        )
        model = model.to(device="cuda")

    # Wrap model with FSDP
    if strategy == "fsdp":
        mixed_precision = MixedPrecision(
            param_dtype=torch.bfloat16, reduce_dtype=torch.float32, buffer_dtype=torch.float32
        )

        model = FSDP(
            model,
            use_orig_params=False,
            device_id=torch.cuda.current_device(),
            sharding_strategy=ShardingStrategy.FULL_SHARD,
            mixed_precision=mixed_precision,
            device_mesh=device_mesh,
        )
    else:
        mp_policy = MixedPrecisionPolicy(
            param_dtype=torch.bfloat16, reduce_dtype=torch.float32, cast_forward_inputs=True
        )
        fsdp_kwargs = {
            "mesh": device_mesh,
            "mp_policy": mp_policy,
        }
        apply_fsdp2(model, fsdp_kwargs, {})

    optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)

    # Create checkpoint manager
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    checkpoint_manager = FSDPCheckpointManager(
        model=model, optimizer=optimizer, lr_scheduler=lr_scheduler, tokenizer=tokenizer
    )

    # Generate sample input
    batch_size = 2
    seq_len = 32
    vocab_size = 32000
    # First input for initial update
    input_ids1 = torch.randint(0, vocab_size, (batch_size, seq_len), device="cuda")
    attention_mask1 = torch.ones_like(input_ids1)

    # Second input for verification
    input_ids2 = torch.randint(0, vocab_size, (batch_size, seq_len), device="cuda")
    attention_mask2 = torch.ones_like(input_ids2)

    # Step 1: Initial update and save checkpoint
    outputs1 = model(input_ids=input_ids1, attention_mask=attention_mask1)
    loss1 = outputs1.logits.mean()
    loss1.backward()
    optimizer.step()
    lr_scheduler.step()
    optimizer.zero_grad()

    # Save checkpoint after first update
    temp_dir = tempfile.mkdtemp()
    checkpoint_path = os.path.join(temp_dir, "checkpoint")
    checkpoint_manager.save_checkpoint(local_path=checkpoint_path, hdfs_path=None, global_step=0)

    # Step 2: Second update and forward pass
    outputs2 = model(input_ids=input_ids2, attention_mask=attention_mask2)
    loss2 = outputs2.logits.mean()
    loss2.backward()
    optimizer.step()
    lr_scheduler.step()
    optimizer.zero_grad()

    # Record logits after second update
    with torch.no_grad():
        logits_before_load = model(input_ids=input_ids2, attention_mask=attention_mask2).logits

    # Step 3: Load checkpoint and repeat second update
    checkpoint_manager.load_checkpoint(checkpoint_path)

    # Repeat the second update with same input
    outputs3 = model(input_ids=input_ids2, attention_mask=attention_mask2)
    loss3 = outputs3.logits.mean()
    loss3.backward()
    optimizer.step()
    lr_scheduler.step()
    optimizer.zero_grad()

    # Record logits after loaded checkpoint and update
    with torch.no_grad():
        logits_after_load = model(input_ids=input_ids2, attention_mask=attention_mask2).logits

    # Step 4: Verify outputs match
    torch.testing.assert_close(logits_before_load, logits_after_load, atol=0.0, rtol=0.0)
    print("Checkpoint save/load test passed!")

    # Cleanup
    shutil.rmtree(temp_dir)
    torch.distributed.barrier()
    torch.distributed.destroy_process_group()


if __name__ == "__main__":
    strategy = os.environ.get("STRATEGY", "fsdp")
    test_fsdp_ckpt(strategy=strategy)