test_transformer.py 6.23 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from flash_attn.bert_padding import index_first_axis, pad_input, rearrange, unpad_input
from transformers import (
    AutoModelForCausalLM,
    AutoModelForTokenClassification,
    GemmaConfig,
    LlamaConfig,
    MistralConfig,
    Qwen2Config,
)

from verl.utils.model import compute_position_id_with_mask, create_random_mask
from verl.utils.torch_functional import log_probs_from_logits_all_rmpad, masked_mean

# TODO(sgm): add more models for test
# we only need one scale for each model
test_configs = [
    LlamaConfig(num_hidden_layers=1),
    MistralConfig(num_hidden_layers=1),
    GemmaConfig(num_hidden_layers=1),
    Qwen2Config(num_hidden_layers=1),
]


def test_hf_casual_models():
    batch_size = 4
    seqlen = 128
    response_length = 127

    for config in test_configs:
        # config = AutoConfig.from_pretrained(test_case)
        with torch.device("cuda"):
            model = AutoModelForCausalLM.from_config(
                config=config, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
            )
            model = model.to(device="cuda")
        input_ids = torch.randint(low=0, high=config.vocab_size, size=(batch_size, seqlen), device="cuda")
        attention_mask = create_random_mask(
            input_ids=input_ids,
            max_ratio_of_left_padding=0.1,
            max_ratio_of_valid_token=0.8,
            min_ratio_of_valid_token=0.5,
        )
        position_ids = compute_position_id_with_mask(
            attention_mask
        )  # TODO(sgm): we can construct the position_ids_rmpad here

        input_ids_rmpad, indices, *_ = unpad_input(
            input_ids.unsqueeze(-1), attention_mask
        )  # input_ids_rmpad (total_nnz, ...)
        input_ids_rmpad = input_ids_rmpad.transpose(0, 1)  # (1, total_nnz)

        # unpad the position_ids to align the rotary
        position_ids_rmpad = index_first_axis(
            rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."), indices
        ).transpose(0, 1)

        # input with input_ids_rmpad and postition_ids to enable flash attention varlen
        logits_rmpad = model(
            input_ids_rmpad, position_ids=position_ids_rmpad, use_cache=False
        ).logits  # (1, total_nnz, vocab_size)

        origin_logits = model(
            input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, use_cache=False
        ).logits
        origin_logits_rmpad, origin_logits_indices, *_ = unpad_input(origin_logits, attention_mask)

        logits_rmpad = logits_rmpad.squeeze(0)
        log_probs = log_probs_from_logits_all_rmpad(
            input_ids_rmpad=input_ids_rmpad,
            logits_rmpad=logits_rmpad,
            indices=indices,
            batch_size=batch_size,
            seqlen=seqlen,
            response_length=response_length,
        )  # (batch, seqlen)
        origin_log_probs = log_probs_from_logits_all_rmpad(
            input_ids_rmpad=input_ids_rmpad,
            logits_rmpad=origin_logits_rmpad,
            indices=origin_logits_indices,
            batch_size=batch_size,
            seqlen=seqlen,
            response_length=response_length,
        )  # (batch, seqlen)

        torch.testing.assert_close(
            masked_mean(log_probs, attention_mask[:, -response_length - 1 : -1]),
            masked_mean(origin_log_probs, attention_mask[:, -response_length - 1 : -1]),
            atol=1e-2,
            rtol=1e-5,
        )
    print("Check pass")


def test_hf_value_models():
    batch_size = 4
    seqlen = 128

    for config in test_configs:
        # config = AutoConfig.from_pretrained(test_case)
        config.num_labels = 1
        config.classifier_dropout = 0
        config.hidden_dropout = 0
        with torch.device("cuda"):
            model = AutoModelForTokenClassification.from_config(
                config=config, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
            )
            model = model.to(device="cuda")
        input_ids = torch.randint(low=0, high=config.vocab_size, size=(batch_size, seqlen), device="cuda")
        attention_mask = create_random_mask(
            input_ids=input_ids,
            max_ratio_of_left_padding=0.1,
            max_ratio_of_valid_token=0.8,
            min_ratio_of_valid_token=0.5,
        )
        position_ids = compute_position_id_with_mask(
            attention_mask
        )  # TODO(sgm): we can construct the position_ids_rmpad here

        input_ids_rmpad, indices, *_ = unpad_input(
            input_ids.unsqueeze(-1), attention_mask
        )  # input_ids_rmpad (total_nnz, ...)
        input_ids_rmpad = input_ids_rmpad.transpose(0, 1)  # (1, total_nnz)

        # unpad the position_ids to align the rotary
        position_ids_rmpad = index_first_axis(
            rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."), indices
        ).transpose(0, 1)

        origin_logits = model(
            input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, use_cache=False
        ).logits

        # input with input_ids_rmpad and postition_ids to enable flash attention varlen
        rmpad_logits = model(
            input_ids_rmpad, position_ids=position_ids_rmpad, use_cache=False
        ).logits  # (1, total_nnz, 1)
        rmpad_logits = rmpad_logits.squeeze(0)
        pad_logits = pad_input(rmpad_logits, indices, batch_size, seqlen=seqlen)

        torch.testing.assert_close(
            masked_mean(pad_logits, attention_mask[:, :, None]),
            masked_mean(origin_logits, attention_mask[:, :, None]),
            atol=1e-2,
            rtol=1e-5,
        )
    print("Value model check pass")


if __name__ == "__main__":
    test_hf_casual_models()
    test_hf_value_models()