test_react_agent_loop.py 7.12 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os

import numpy as np
import pytest
import ray
from langchain_core.tools import tool
from omegaconf import DictConfig

from recipe.langgraph_agent.react_agent_loop import ReactAgentLoop
from tests.experimental.agent_loop.agent_utils import init_agent_loop_manager
from verl.protocol import DataProto
from verl.utils import hf_tokenizer


@pytest.fixture
def init_config() -> DictConfig:
    from hydra import compose, initialize_config_dir

    with initialize_config_dir(config_dir=os.path.abspath("verl/trainer/config")):
        config = compose(config_name="ppo_trainer")
    model_path = "Qwen/Qwen2.5-1.5B-Instruct"
    config.actor_rollout_ref.model.path = model_path
    config.actor_rollout_ref.rollout.name = os.getenv("ROLLOUT_NAME", "vllm")
    config.actor_rollout_ref.rollout.mode = "async"
    config.actor_rollout_ref.rollout.prompt_length = 4096
    config.actor_rollout_ref.rollout.response_length = 4096
    config.actor_rollout_ref.rollout.n = 4
    config.actor_rollout_ref.rollout.agent.num_workers = 2

    # test sleep/wake_up with fsdp offload
    config.actor_rollout_ref.actor.fsdp_config.param_offload = True
    config.actor_rollout_ref.actor.fsdp_config.optimizer_offload = True

    return config


@tool(parse_docstring=True)
def get_current_temperature(location: str, unit: str = "celsius"):
    """Get current temperature at a location.

    Args:
        location: The location to get the temperature for, in the format "City, State, Country".
        unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"])

    Returns:
        the temperature, the location, and the unit in a dict
    """
    print(f"[DEBUG] get_current_temperature: {location}, {unit}")
    return {
        "temperature": 26.1,
        "location": location,
        "unit": unit,
    }


@tool(parse_docstring=True)
def get_temperature_date(location: str, date: str, unit: str = "celsius"):
    """Get temperature at a location and date.

    Args:
        location: The location to get the temperature for, in the format "City, State, Country".
        date: The date to get the temperature for, in the format "Year-Month-Day".
        unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"])

    Returns:
        the temperature, the location, the date and the unit in a dict
    """
    print(f"[DEBUG] get_temperature_date: {location}, {date}, {unit}")
    return {
        "temperature": 25.9,
        "location": location,
        "date": date,
        "unit": unit,
    }


class TestReactAgentLoop(ReactAgentLoop):
    @classmethod
    def init_class(cls, config, tokenizer, **kwargs):
        # TODO: find better way to configure tools
        cls.tools = [get_current_temperature, get_temperature_date]
        super().init_class(config, tokenizer, **kwargs)


def test_react_agent(init_config):
    ray.init(
        runtime_env={
            "env_vars": {
                "TOKENIZERS_PARALLELISM": "true",
                "NCCL_DEBUG": "WARN",
                "VLLM_LOGGING_LEVEL": "INFO",
                "VLLM_USE_V1": "1",
            }
        }
    )

    # =========================== 1. Init rollout manager ===========================
    agent_loop_config = [
        {
            "_target_": "recipe.langgraph_agent.test_react_agent_loop.TestReactAgentLoop",
            "name": "react_agent",
        },
    ]
    agent_loop_config_path = "/tmp/agent_loop_config.json"
    with open(agent_loop_config_path, "w") as f:
        json.dump(agent_loop_config, f)

    n = 2
    init_config.actor_rollout_ref.rollout.n = n
    # init_config.actor_rollout_ref.rollout.multi_turn.tool_config_path = tool_config_path
    init_config.actor_rollout_ref.rollout.multi_turn.max_parallel_calls = 2
    init_config.actor_rollout_ref.rollout.agent.agent_loop_config_path = agent_loop_config_path
    agent_loop_manager = init_agent_loop_manager(init_config)

    # =========================== 2. Generate sequences  ===========================
    raw_prompts = [
        [
            {"role": "user", "content": "How are you?"},
        ],
        [
            {"role": "user", "content": "What's the temperature in Los Angeles now?"},
        ],
        [
            {"role": "user", "content": "What's the temperature in New York now?"},
        ],
        [
            {
                "role": "system",
                "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.\n\n"
                "Current Date: 2024-09-30",
            },
            {"role": "user", "content": "What's the temperature in San Francisco now? How about tomorrow?"},
        ],
    ]
    batch = DataProto(
        non_tensor_batch={
            "raw_prompt": np.array([np.array(prompt) for prompt in raw_prompts], dtype=object),
            "agent_name": np.array(["react_agent"] * len(raw_prompts)),
        },
    )
    batch = batch.repeat(n)
    result = agent_loop_manager.generate_sequences(prompts=batch)
    assert len(result) == len(raw_prompts) * n

    # Check turns
    num_turns = result.non_tensor_batch["__num_turns__"]
    print(f"num_turns: {num_turns}")
    for i in range(len(num_turns)):
        if i // n == 0:
            # [user, assistant]
            assert num_turns[i] == 2
        else:
            # [user, assistant, tool, assistant]
            assert num_turns[i] == 4

    # Check response_mask
    tokenizer = hf_tokenizer(init_config.actor_rollout_ref.model.path)
    responses = result.batch["responses"]
    response_mask = result.batch["response_mask"]
    attention_mask = result.batch["attention_mask"]
    assert responses.size() == response_mask.size(), f"{responses.size()} != {response_mask.size()}"
    response_length = response_mask.size(1)

    for i in range(len(responses)):
        # response with tool response
        valid_tokens = responses[i][attention_mask[i][-response_length:].bool()]
        response_with_obs = tokenizer.decode(valid_tokens)

        # response without tool response
        valid_tokens = responses[i][response_mask[i].bool()]
        response_without_obs = tokenizer.decode(valid_tokens)

        assert "<tool_response>" not in response_without_obs, (
            f"found <tool_response> in response: {response_without_obs}"
        )
        assert "</tool_response>" not in response_without_obs, (
            f"found </tool_response> in response: {response_without_obs}"
        )
        print("=========================")
        print(response_with_obs)
        print("---")
        print(response_without_obs)

    print("Test passed!")
    ray.shutdown()